令和6年度

阪南2区整備事業に係る環境調査

海域環境調査

月 報(1月分)

極 株式会社 KANSO テクノス

目 次

1.	調査目的	
2.	調査日及び訓]査内容1
3.	調査場所	
4.	調査結果	
4	1-1 水質訓]查結果3
	4 - 1 - 1	定点監視結果および環境基準との比較 3
	4 - 1 - 2	補助監視結果および環境基準、監視基準との比較8
4	1-2 ダイス	キシン類調査結果20
	4 - 2 - 1	水質調査結果20
	4 - 2 - 2	底質調査結果33

1. 調査目的

本調査は、阪南2区整備事業において、埋立工事が周辺海域に及ぼす影響を監視することを目的とする。

2. 調査日及び調査内容

調査日及び調査内容を表2に示す。

表 2 調査日及び調査内容

調査日	定点監視	補助監視	調査内容
1月17日		0	現場機器測定
21 日		0	現場機器測定
23 日	0	0	採水・分析及び現場機器測定
			水質・底質(ダイオキシン類)
28 日		0	現場機器測定

3. 調査場所

岸和田市岸之浦町地先の阪南 2 区周辺海域において定点監視は St. $1 \sim St. 4 の 4$ 地点、補助監視は護岸開口部の St. $S-1 \sim St. S-2 の 2$ 地点及びバックグラウンドを把握するため St. $B-1 \sim St. B-3 の 3$ 地点で行った。

また、ダイオキシン類調査のうち、水質調査は St. $1 \sim St. 4$ 、St. S-1、St. S-2の 6 地点、底質調査は St. $1 \sim St. 4$ の 4 地点で行った。

調査地点の緯度、経度を表3に、調査地点を図3に示す。

表3 調査地点の緯度、経度

	調査地点	Ī.	水質	調査	ダイオキシン類 調査	
地点名	北緯	東経	定点監視	補助監視	水質	底質
St. 1	34° 28′ 57″	135° 20′ 57″	0		0	0
St. 2	34° 28′ 02″	135° 20′ 42″	0		0	0
St. 3	34° 29′ 12″	135° 21′ 43″	0		0	0
St. 4	34° 28′ 02″	135° 21′ 22″	0		0	0
St. S-1	34° 29′ 15″	135° 21′ 21″		0	0	
St. S-2	34° 28′ 14″	135° 20′ 46″		0	0	
St. B-1	34° 29′ 50″	135° 21′ 11″		0		
St. B-2	34° 28′ 57″	135° 20′ 31″		0		
St. B-3	34° 27′ 18″	135° 20′ 55″		0		

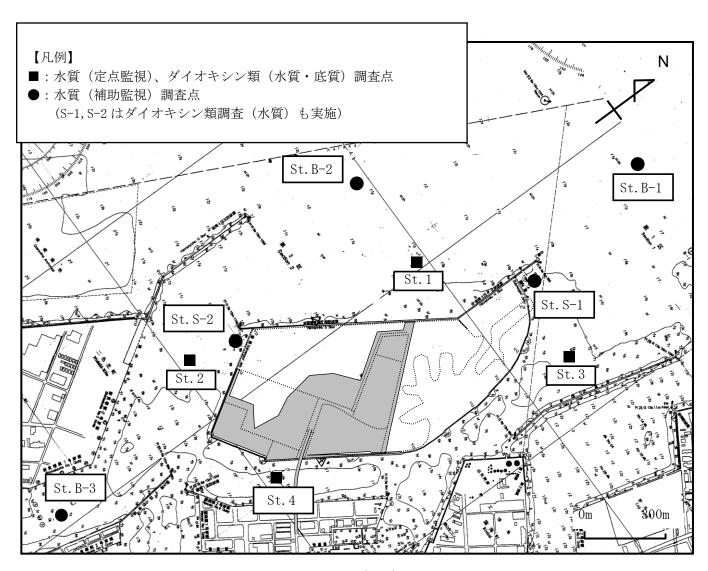


図3 調査地点

4. 調査結果

4-1 水質調査結果

4-1-1 定点監視結果および環境基準との比較

1)調査地点の概況

特になし。

2) 現場機器測定

pH は、St. 1 の上層において環境基準を満たしていなかった。 DO は、全地点全層において環境基準を満たしていた。 濁度は、全地点全層において特に高い値はみられなかった。

3) 採水分析項目

SS は、全地点全層において特に高い値はみられなかった。
VSS は、全地点全層において特に高い値はみられなかった。
COD は、全地点全層において環境基準を満たしていた。
全窒素は、全地点全層において環境基準を満たしていた。
全リンは、全地点全層において環境基準を満たしていた。
クロロフィルaは、全地点全層において特に高い値はみられなかった。

表 4-1-1-1 水質調査結果(定点監視)

調查年月日: 令和7年1月23日

								 河	- 月日: 令和7年1月23日
項目\地点	番号	St. 1	St. 2	St. 3	St. 4	最小値	~	最大値	平均値
調査時刻	刺	10:49	11:27	10:09	12:22				
水温	上層	10. 1	10.5	10.2	10. 5	10. 1	~	10.5	10.3
(℃)	下層	10. 5	10.8	10.6	10.8	10.5	~	10.8	10.7
七八	上層	31. 4	31.5	31.5	31.5	31. 4	~	31.5	31.5
塩分	下層	31.8	32. 1	31.7	32. 0	31.7	~	32. 1	31.9
濁度	上層	1	1	1	1	1	~	1	1
度 (カオリン)	下層	1	2	1	1	1	~	2	1
рН	上層	8. 4	8. 3	8.3	8. 3	8.3	~	8. 4	ı
рн	下層	8. 2	8. 1	8.2	8. 2	8. 1	~	8. 2	ı
SS	上層	1	1	1	1	1	~	1	1
(mg/L)	下層	1	1	1	2	1	~	2	1
VSS	上層	<1	<1	1	<1	<1	~	1	1
(mg/L)	下層	<1	<1	<1	<1	<1	~	<1	<1
COD	上層	2. 4	2. 3	2. 1	2. 0	2.0	~	2. 4	2. 2
(mg/L)	下層	1.8	1.5	1.7	1. 6	1.5	~	1.8	1. 7
DO	上層	11	11	11	11	11	~	11	11
(mg/L)	下層	9. 3	8.3	9. 9	8.8	8.3	~	9. 9	9. 1
全窒素	上層	0.31	0.31	0.34	0. 26	0. 26	~	0. 34	0.31
(mg/L)	下層	0. 27	0. 26	0. 28	0. 26	0.26	~	0. 28	0. 27
全リン	上層	0. 027	0. 028	0.031	0.022	0.022	~	0.031	0.027
(mg/L)	下層	0. 023	0. 027	0.024	0. 025	0.023	~	0.027	0. 025
クロロフィルa	上層	8. 0	8. 1	8.0	7.8	7.8	~	8. 1	8.0
(μg/L)	下層	8. 2	5. 2	8. 2	8. 9	5. 2	~	8. 9	7. 6

測定層は上層:海面下1m、下層:海底面上2m 平均値は、下限値未満の場合は下限値を用いて計算した。(全地点が下限値未満の場合を除く。)

表 4-1-1-2 現場機器測定結果

調査地点				St.1							
時刻		10:49									
水深(m)		12.2									
項目	水温	塩分	pН	DO	DO	濁度					
層(m)	(℃)	(-)	(-)	(mg/L)	(%)	(度(カオリン))					
0.5	10.2	31.4	8.4	11	128	1					
1.0	10.1	31.4	8.4	11	128	1					
2.0	10.2	31.4	8.4	11	128	1					
3.0	10.1	31.4	8.4	11	128	1					
4.0	10.1	31.5	8.3	11	128	1					
5.0	10.1	31.5	8.3	11	126	2					
6.0	10.1	31.5	8.3	11	125	1					
7.0	10.2	31.5	8.3	11	122	1					
8.0	10.4	31.6	8.3	10	116	1					
9.0	10.4	31.7	8.2	9.9	109	1					
10.0	10.5	31.8	8.2	9.4	104	1					
11.0	-	-	-	-	-	-					
12.0	-	-	-	-	-	-					
13.0	-	-	-	-	=	-					
14.0	-	-	-	-	-	_					
15.0	-	-	-	-	-	-					
B-2.0	10.5	31.8	8.2	9.3	103	1					
B-1.0	10.6	31.9	8.2	8.9	98	1					
B-0.5	10.8	32.1	8.1	8.2	91	2					

			調	雪査年月日:	令和7年1月	23日					
調査地点				St.2							
時刻		11:27									
水深(m)		13.7									
項目	水温	塩分	pН	DO	DO	濁度					
層(m)	(℃)	(-)	(-)	(mg/L)	(%)	(度(カオリン))					
0.5	10.5	31.4	8.3	11	129	1					
1.0	10.5	31.5	8.3	11	131	1					
2.0	10.6	31.5	8.3	12	132	1					
3.0	10.6	31.5	8.3	11	125	1					
4.0	10.6	31.6	8.3	10	118	1					
5.0	10.6	31.6	8.3	10	115	1					
6.0	10.7	31.8	8.2	10	112	1					
7.0	10.6	31.8	8.2	10	110	1					
8.0	10.6	31.9	8.2	9.0	100	1					
9.0	10.7	32.0	8.2	8.6	96	1					
10.0	10.7	32.0	8.1	8.4	93	1					
11.0	10.8	32.1	8.1	8.3	92	2					
12.0	-	-	-	-	-	-					
13.0	-	-	-	-	-	-					
14.0	-	-	-	-	-	-					
15.0	-	-	-	-	-	-					
B-2.0	10.8	32.1	8.1	8.3	92	2					
B-1.0	10.8	32.1	8.1	8.2	91	2					
B-0.5	10.8	32.1	8.1	8.2	91	2					

調査地点	St.3										
時刻		10:09									
水深(m)		9.2									
項目	水温	塩分	pН	DO	DO	濁度					
層(m)	(℃)	(-)	(-)	(mg/L)	(%)	(度(カオリン))					
0.5	10.2	31.4	8.3	11	123	1					
1.0	10.2	31.5	8.3	11	123	1					
2.0	10.3	31.5	8.3	11	123	1					
3.0	10.4	31.5	8.3	11	121	1					
4.0	10.4	31.6	8.3	10	118	1					
5.0	10.2	31.6	8.3	10	116	1					
6.0	10.3	31.6	8.3	10	113	1					
7.0	10.4	31.7	8.2	10	111	1					
8.0	-	-	-	-	-	-					
9.0	-	-	-	-	-	-					
10.0	-	-	-	-	-	-					
11.0	-	-	-	-	-	-					
12.0	-	-	-	=	-	-					
13.0	-	-	-	-	-	-					
14.0	-	-	-	=	-	-					
15.0	-	-	-	=	-	-					
B-2.0	10.6	31.7	8.2	9.9	109	1					
B-1.0	10.7	32.0	8.2	8.7	97	2					
B-0.5	10.7	32.0	8.2	8.6	96	9					

調査地点	St.4									
時刻			1	2:22						
水深(m)		11.3								
項目	水温	塩分	pН	DO	DO	濁度				
層(m)	(℃)	(-)	(-)	(mg/L)	(%)	(度(カオリン))				
0.5	10.5	31.4	8.3	11	124	1				
1.0	10.5	31.5	8.3	11	124	1				
2.0	10.5	31.5	8.3	11	123	1				
3.0	10.5	31.5	8.3	10	120	1				
4.0	10.6	31.6	8.3	10	116	1				
5.0	10.6	31.7	8.2	10	110	1				
6.0	10.7	31.8	8.2	9.6	106	1				
7.0	10.7	31.9	8.2	9.4	104	1				
8.0	10.8	31.9	8.2	8.9	99	1				
9.0	10.8	32.0	8.2	8.8	98	1				
10.0	-	-	-	-	-	-				
11.0	-	-	-	-	-	-				
12.0	-	-	-	-	-	-				
13.0	-	-	-	=	-	-				
14.0	-	-	-	-	-	-				
15.0	-	-	-	=.	=	-				
B-2.0	10.8	32.0	8.2	8.8	98	1				
B-1.0	10.8	32.0	8.2	8.8	98	1				
B-0.5	10.8	32.0	8.2	8.4	94	2				

表 4-1-1-3 定点監視野帳

項目	単位	層		調査	地点	
- 現日	中亚	眉	St. 1	St. 2	St. 3	St. 4
調査日			1月23日	1月23日	1月23日	1月23日
調査開始時刻			10:49	11:27	10:09	12:22
天気・雲量			晴・6	晴・6	晴・6	晴・6
風向・風力			ENE • 1	NE • 1	ENE • 1	NE • 1
風浪階級			1	1	1	1
気温	$^{\circ}$ C		10.6	10.7	10.9	11. 0
水深	m		12.2	13. 7	9. 2	11. 3
透明度	m		4.9	4. 0	4. 3	3. 5
水色			dark yellowish	dark yellowish	dark yellowish	dark yellowish
			green	green	green	green
(マンセル値)			(10GY 3/4)	(10GY 3/4)	(10GY 3/4)	(10GY 3/4)
赤潮の有無			無	無	無	無
油膜の有無			無	無	無	無
水温	$^{\circ}\!\mathbb{C}$	上	10.1	10.5	10.2	10. 5
		下	10.5	10.8	10.6	10.8
透視度	cm	卜	50<	50<	50<	50<
		下	50<	50<	50<	50<
流速	cm/sec	上	4.8	2. 5	1.3	2.6
		下	3. 2	5.3	4. 1	4. 5
流向	(°)	上	186	339	70	226
		下	219	116	310	77

注:測定層は、上層:海面下1m、下層:海底面上2m

~1

表4-1-1-4 定点監視調査結果と環境基準との比較

調査年月日:令和7年1月23日

項目\均	 也点番号	St. 1	St. 2	St. 3	St. 4	環境基準値 ^{注)}
	上層	×	\cap	0	<u> </u>	WARTER .
На		0	0	0		7. 0以上8. 3以下
			0			
COD	上層	0	0	0	0	8mg/L 以下
СОР	下層	0	0	0	0	56, 2 5/1
DO	上層	0	0	0	0	2mg/L 以上
ЪО	下層	0	0	0	0	Ziiig/ L D. L.
全窒素	上層	0	0	0	0	1mg/L 以下
土主糸	下層	0	0	0	0	Ting/L EX [
 	上層	0	0	0	0	0.00ma/l N.5
全リン・	下層	0	0	0	0	0.09mg/L 以下

備考)○:基準内 ×:基準外

注)環境基準値は「生活環境の保全に関する環境基準」による。当調査海域はC類型、IV類型に該当。

4-1-2 補助監視結果および環境基準、監視基準との比較

水質調査結果を表 4-1-2-1~表 4-1-2-4、補助監視野帳を表 4-1-2-2-1~表 4-1-2-10 に示す。また、環境基準との比較を表 4-1-2-10 に示す。

なお、護岸開口部の St. S - 1 と St. S - 2 における濁度の監視基準は、バックグラウンドの最低値との差が上層は+ 3 度(カオリン)未満、下層は+ 11 度(カオリン)未満としている。

- 1月17日
- 1)調査地点の概況 特になし。
- 2) 現場機器測定

pH は、全地点全層において環境基準を満たしていた。 DO は、全地点全層において環境基準を満たしていた。 濁度は、全地点全層において特に高い値はみられなかった。

- 1月21日
- 調査地点の概況 特になし。
- 2) 現場機器測定

pHは、全地点全層において環境基準を満たしていた。 DOは、全地点全層において環境基準を満たしていた。 濁度は、全地点全層において特に高い値はみられなかった。

- 1月23日
- 調査地点の概況 特になし。
- 2) 現場機器測定

pH は、全地点全層において環境基準を満たしていた。 DO は、全地点全層において環境基準を満たしていた。 濁度は、全地点全層において特に高い値はみられなかった。

3) 採水分析項目

SS は、全地点全層において特に高い値はみられなかった。 VSS は、全地点全層において特に高い値はみられなかった。

- 1月28日
- 1)調査地点の概況 特になし。
- 2) 現場機器測定

pH は、全地点全層において環境基準を満たしていた。 DO は、全地点全層において環境基準を満たしていた。 濁度は、全地点全層において特に高い値はみられなかった。

表 4-1-2-1 水質調査結果(補助監視地点)

調査年月日 :令和7年1月17日

項目\地,	点番号	St. $S-1$	St. $S - 2$	最小値	~	最大値	St. B — 1	St. B – 2	St. B – 3	平均値
調査時	刻	09 : 41	09 : 32		_		09 : 00	09 : 10	09 : 22	_
水温	上層	8.6	8. 5	8. 5	~	8.6	8.8	8.7	8.3	8.6
(\mathcal{C})	下層	8. 4	8.6	8. 4	~	8.6	9. 2	10.1	8.4	9.2
塩分	上層	30. 4	30.6	30. 4	~	30.6	30.5	30.5	30. 4	30.5
	下層	30.6	30. 7	30.6	~	30. 7	31.0	31.6	30. 4	31.0
濁度	上層	<1	<1	<1	~	<1	<1	<1	<1	<1
度 (カオリン)	下層	1	<1	<1	~	1	1	1	<1	1
рН	上層	8. 2	8. 2	8. 2	~	8.2	8. 2	8. 2	8. 2	_
	下層	8. 2	8. 2	8. 2	~	8.2	8. 2	8. 2	8. 2	_
備	考									

測定層は上層:海面下1m、下層:海底面上2m 平均値は、下限値未満の場合は下限値を用いて計算した。(全地点が下限値未満の場合を除く。)

表 4-1-2-2 水質調査結果(補助監視地点)

調査年月日 :令和7年1月21日

項目\地	点番号	St. $S-1$	St. $S - 2$	最小値	~	最大値	St. B — 1	St. B – 2	St. B – 3	平均値
調査時	刻	09 : 33	09 : 25		_		09 : 00	09 : 09	09 : 18	_
水温	上層	10. 2	10. 1	10. 1	~	10.2	10.0	9.9	10.0	10.0
(℃)	下層	10.7	10. 7	10. 7	~	10.7	10.8	10.8	10.6	10.7
塩分	上層	31.5	31. 2	31. 2	~	31. 5	31.3	31.3	31.3	31.3
	下層	32.0	32. 0	32.0	~	32.0	32. 1	32. 1	31.8	32.0
濁度	上層	1	1	1	~	1	1	<1	<1	1
度 (カオリン)	下層	1	1	1	~	1	1	1	1	1
рН	上層	8. 2	8. 2	8. 2	~	8.2	8.3	8.3	8. 2	_
	下層	8. 2	8. 2	8. 2	~	8.2	8. 2	8. 2	8. 2	_
備	考									

測定層は上層:海面下1m、下層:海底面上2m 平均値は、下限値未満の場合は下限値を用いて計算した。(全地点が下限値未満の場合を除く。)

表 4-1-2-3 水質調査結果(補助監視地点)

調査年月日 : 令和7年1月23日

項目\地点	点番号	St. S - 1	St. S – 2	最小値	~	最大値	St. B — 1	St. B – 2	St. B – 3	平均値
調査時	:刻	09 : 51	09 : 37		_		09 : 03	09 : 15	09 : 27	_
水温	上層	9. 9	10.3	9. 9	~	10. 3	10.0	10. 2	10.2	10. 1
(℃)	下層	10.6	10.8	10.6	~	10.8	10.8	10.8	10.8	10.8
塩分	上層	31. 4	31. 3	31. 3	~	31. 4	31. 4	31.4	31.4	31. 4
	下層	31.8	32.0	31.8	~	32.0	32. 1	32. 1	32.0	32. 1
濁度	上層	1	1	1	~	1	1	1	1	1
度 (カオリン)	下層	1	1	1	~	1	1	1	1	1
рН	上層	8. 3	8. 3	8. 3	~	8. 3	8.3	8.3	8.3	_
	下層	8. 2	8. 2	8. 2	~	8. 2	8. 2	8.2	8. 2	_
SS(mg/L)	上層	2	1	1	~	2	1	1	2	1
33 (mg/L)	下層	1	1	1	~	1	1	2	1	1
VSS (mg/L)	上層	1	<1	<1	~	1	<1	<1	1	1
(33 (IIIg/L)	下層	<1	<1	<1	~	<1	<1	<1	<1	<1
備	考									

測定層は上層:海面下1m、下層:海底面上2m

平均値は、下限値未満の場合は下限値を用いて計算した。(全地点が下限値未満の場合を除く。)

表 4-1-2-4 水質調査結果(補助監視地点)

調査年月日 :令和7年1月28日

項目\地点	点番号	St. S – 1	St. $S-2$	最小値	~	最大値	St. B — 1	St. B – 2	St. B – 3	平均値
調査時	刻	09 : 49	09 : 35		_		09 : 00	09 : 10	09 : 24	_
水温	上層	10. 4	10. 3	10. 3	~	10.4	10.4	10.4	10.3	10.4
(℃)	下層	10.5	10. 5	10. 5	~	10.5	10.5	10.5	10.4	10.5
塩分	上層	31.6	31.6	31.6	~	31.6	31. 5	31.5	31.8	31.6
	下層	31. 7	31. 9	31. 7	~	31. 9	31. 5	31.6	32.0	31. 7
濁度	上層	2	1	1	~	2	1	1	1	1
度 (カオリン)	下層	2	1	1	~	2	1	1	2	1
рН	上層	8.3	8. 3	8. 3	~	8.3	8.3	8.3	8.3	_
	下層	8.3	8. 2	8. 2	~	8.3	8.3	8.3	8.3	_
備	考									

測定層は上層:海面下1m、下層:海底面上2m

表4-1-2-5 補助監視野帳

令和7年1月17日

調査地	 1点	St. S - 1	St. S - 2	St. B — 1	St. B – 2	S和7年1月17日 St. B-3
調査開始		09 : 41	09 : 32	09 : 00	09 : 10	09 : 22
天気・:		晴・ 5	晴・ 5	晴 ・ 7	 晴 ・ 7	晴 · 5
 風向・	 風力	N • 3	N • 3	N • 3	N • 3	N • 3
	指級	2	2	3	3	2
—————————————————————————————————————	C)	7. 1	7. 2	6.8	6.8	7. 3
水深(:	m)	11. 2	10. 7	13. 5	13. 6	8.8
透明度	(m)	8.8	9. 0	8.0	8.3	7. 9
		deep	deep	deep	deep	deep
水色	į	green	green	green	green	green
(マンセ,	ル値)	5G3. 5/7				
赤潮の	状態	無	無	無	無	無
油膜の	有無	無	無	無	無	無
L. NR. (00)	上層	8.6	8. 5	8.8	8.7	8.3
水温(℃)	下層	8. 4	8.6	9. 2	10. 1	8.4
11()	上層	8. 2	8. 2	8. 2	8. 2	8. 2
p H (-)	下層	8. 2	8. 2	8. 2	8. 2	8. 2
4: ハ ()	上層	30. 4	30.6	30. 5	30. 5	30. 4
塩分(-)	下層	30.6	30. 7	31.0	31.6	30. 4
DO	上層	9. 1	9. 1	9. 0	9. 1	9. 0
(mg/L)	下層	9. 1	9. 0	8. 9	8. 7	9. 1
DO飽和度	上層	95	95	95	96	94
(%)	下層	95	95	95	95	95
濁度	上層	<1	<1	<1	<1	<1
(度(カオリン))	下層	1	<1	1	1	<1
濁度	上層	0	0	ハ゛ックク゛ラウン	ト゛(BG) 値=	<1
(BGとの差)	下層	0	0	ハ゛ックク゛ラウン	ト゛(BG) 値=	<1

測定層は、上層:海面下1m、下層:海底面上2m 濁度(バックグラウンド値との差)は、「各点各層濁度」-「バックグラウンドの濁度最小値」とし、 下限値未満(<1)は「1」として計算した。 濁度の監視基準(バックグラウンド値との差)は、上層が3度・カオリン未満、下層が11度・カオリン未満

表4-1-2-6 補助監視野帳

令和7年1月21日

調査地	1占	St. S - 1	St. S - 2	St. B — 1	St. B – 2	S和7年1月21日 St. B-3
調査開始		09 : 33	09 : 25	09 : 00	09 : 09	09 : 18
天気・第						
		晴 • 5	晴 • 5	晴 • 7	晴 • 6	晴 • 6
風向・月		W • 1	W • 1	W • 1	W • 1	W • 1
風浪階		1	1	1	1	1
気温(^c		11.5	11. 2	9.0	10. 1	10.6
水深(1	m)	11. 1	10. 7	13. 3	13. 6	8.6
透明度((m)	6.0	7. 0	6. 3	6. 2	6. 2
		deep	deep	deep	deep	deep
水色	Ĺ	green	green	green	green	green
(マンセ)	ル値)	5G3.5/7	5G3. 5/7	5G3. 5/7	5G3.5/7	5G3. 5/7
赤潮の	状態	無	無	無	無	無
油膜の	有無	無	無	無	無	無
上2月(90)	上層	10. 2	10. 1	10.0	9. 9	10.0
水温(℃)	下層	10. 7	10. 7	10.8	10.8	10.6
TT ()	上層	8. 2	8. 2	8.3	8.3	8. 2
p H (-)	下層	8. 2	8. 2	8. 2	8. 2	8. 2
	上層	31. 5	31. 2	31. 3	31. 3	31. 3
塩分(-)	下層	32. 0	32. 0	32. 1	32. 1	31. 8
DO	上層	10	9. 9	10	10	9. 9
(mg/L)	下層	8.8	8. 7	8. 5	8. 4	9. 3
DO飽和度	上層	109	108	111	112	108
(%)	下層	98	97	95	94	103
濁度	上層	1	1	1	<1	<1
(度(カオリン))	下層	1	1	1	1	1
濁度	上層	0	0	ハ゛ックク゛ラウン	ド(BG)値=	<1
(BGとの差)	下層	0	0	ハ゛ックク゛ラウン	ド(BG)値=	1

測定層は、上層:海面下1m、下層:海底面上2m 濁度(バックグラウンド値との差)は、「各点各層濁度」-「バックグラウンドの濁度最小値」とし、 下限値未満(<1)は「1」として計算した。 濁度の監視基準(バックグラウンド値との差)は、上層が3度・カオリン未満、下層が11度・カオリン未満

表4-1-2-7 補助監視野帳

令和7年1月23日

調査地	1 占	St. S - 1	St. $S-2$	St. B — 1	St. B – 2	S和7年1月23日 St. B - 3
調査開始		09 : 51	09 : 37	09 : 03	09 : 15	09 : 27
天気・:		晴 · 7	晴· 7	晴· 7	- · · · · · · · · · · · · · · · · · · ·	晴 · 7
		E • 1	E • 1	E • 1	E • 1	E • 1
風浪階		1	1	1	1	1
気温(10.0	8.8	8.3	8.9	9. 0
水深(11. 3	10.8	13. 5	13. 6	8.8
透明度		4. 1	4. 0	3. 9	4. 1	4. 3
2001度	(111)	dark	dark	dark	dark	dark
-h. #						
水色	1	yellowish	yellowish	yellowish	yellowish	yellowish
	. (4)	green	green	green	green	green
(マンセ		10GY3/4	10GY3/4	10GY3/4	10GY3/4	10GY3/4
赤潮の	状態 	無	無	無	無	無
油膜の	有無	無	無	無	無	無
水温(℃)	上層	9. 9	10. 3	10.0	10. 2	10. 2
//\time (C)	下層	10.6	10.8	10.8	10.8	10.8
p H (-)	上層	8. 3	8. 3	8.3	8.3	8.3
p n (-)	下層	8. 2	8. 2	8. 2	8. 2	8. 2
塩分(-)	上層	31. 4	31. 3	31. 4	31. 4	31. 4
温分(一)	下層	31.8	32. 0	32. 1	32. 1	32. 0
DO	上層	11	11	11	11	11
(mg/L)	下層	9. 3	8. 4	8. 4	8.3	8.6
DO飽和度	上層	119	120	125	122	122
(%)	下層	103	94	93	92	96
濁度	上層	1	1	1	1	1
(度(カオリン))	下層	1	1	1	1	1
濁度	上層	0	0	ハ゛ックク゛ラウン	ド(BG)値=	1
(BGとの差)	下層	0	0	ハ゛ックク゛ラウン	ド(BG)値=	1

測定層は、上層:海面下1m、下層:海底面上2m 濁度(バックグラウンド値との差)は、「各点各層濁度」-「バックグラウンドの濁度最小値」とし、 下限値未満(<1)は「1」として計算した。 濁度の監視基準(バックグラウンド値との差)は、上層が3度・カオリン未満、下層が11度・カオリン未満

表4-1-2-8 補助監視野帳

会和7年1月28日

		I				7和7年1月28日
調査地	也点 ————————————————————————————————————	St. $S-1$	St. $S - 2$	St. B − 1	St. B -2	St. B − 3
調査開始	台時刻	09 : 49	09 : 35	09 : 00	09 : 10	09 : 24
天気・	雲量	晴 ・ 3	晴 ・ 3	晴・ 3	晴・ 3	晴 ・ 3
風向・,	風力	W • 4	W • 4	W • 4	W • 4	W • 3
風浪階	 指級	2	2	3	3	2
気温(C)	10.6	10.0	9. 2	9. 7	9. 4
水深(m)	11. 3	11. 1	13.6	13. 7	8.8
透明度	(m)	3. 7	3. 4	3. 5	3. 3	3.8
		dark	dark	dark	dark	dark
水色	È	yellowish	yellowish	yellowish	yellowish	yellowish
		green	green	green	green	green
(マンセ	ル値)	10GY3/4	10GY3/4	10GY3/4	10GY3/4	10GY3/4
赤潮の	状態	無	無	無	無	無
油膜の	有無	無	無	無	無	無
± 2∃ (°C)	上層	10. 4	10. 3	10. 4	10. 4	10. 3
水温(℃)	下層	10. 5	10. 5	10. 5	10. 5	10. 4
	上層	8.3	8. 3	8. 3	8.3	8.3
p H (-)	下層	8.3	8. 2	8. 3	8.3	8.3
塩分(-)	上層	31. 6	31. 6	31. 5	31. 5	31.8
温分(一)	下層	31. 7	31. 9	31. 5	31. 6	32. 0
DO	上層	10	10	10	10	10
(mg/L)	下層	10	9. 4	9. 9	9. 9	9. 9
DO飽和度	上層	116	113	110	111	112
(%)	下層	110	104	109	109	109
濁度	上層	2	1	1	1	1
(度(カオリン))	下層	2	1	1	1	2
濁度	上層	+1	0	ハ゛ックク゛ラウン	ド(BG)値=	1
(BGとの差)	下層	+1	0	ハ゛ックク゛ラウン	ド(BG)値=	1

測定層は、上層:海面下1m、下層:海底面上2m 濁度 (バックグラウンド値との差) は、「各点各層濁度」-「バックグラウンドの濁度最小値」とし、 下限値未満 (<1)は「1」として計算した。 濁度の監視基準 (バックグラウンド値との差) は、上層が3度・カオリン未満、下層が11度・カオリン未満

表4-1-2-9 補助監視調査結果の環境基準との比較

調査日	項目\均	也点番号	St. S — 1	St. S-2	St. B — 1	St. B -2	St. B — 3
	11	上層	0	0	0	0	0
1月17日	На	下層	0	0	0	0	0
1月17日	DO	上層	0	0	0	0	0
	DO	下層	0	0	0	0	0
	nII.	上層	0	0	0	0	0
1月21日	На	下層	0	0	0	0	0
1月21日	DO	上層	0	0	0	0	0
	DO	下層	0	0	0	0	0
	nII.	上層	0	0	0	0	0
1月23日	рН	下層	0	0	0	0	0
1月25日	DO	上層	0	0	0	0	0
	DO	下層	0	0	0	0	0
	Нд	上層	0	0	0	0	0
1月28日	þп	下層	0	0	0	0	0
1月20日	DO	上層	0	0	0	0	0
	DO	下層	0	0	0	0	0

備考)○:基準内 ×基準外

注)環境基準値は「生活環境の保全に関する環境基準」による。当調査海域はC類型に該当。

pH: 7.0以上8.3以下 DO: 2 mg/L以上

表 4-1-2-10 補助監視点の濁度(バックグラウンド値との差)

調査日	項目\地点番号	St. S-1	評価	St. S-2	評価	バックグラウンド(BG)値
1 日 17 日	上層	0	0	0	0	<1
1月17日	下層	0	0	0	0	<1
1 日 01 □	上層	0	0	0	0	<1
1月21日	下層	0	0	0	0	1
1 □ 00 □	上層	0	0	0	0	1
1月23日	下層	0	0	0	0	1
1 日 00 □	上層	+1	0	0	0	1
1月28日	下層	+1	0	0	0	1

備考)○:基準内 ×基準外

注) 濁度の監視基準 (バックグラウンド値との差) は、上層が3度・カオリン未満、下層が11度・カオリン未満

注) 濁度(BGとの差)の計算は、「各点各層濁度」-「バックグラウンドの濁度最小値」とした。

4-2 ダイオキシン類調査結果

4-2-1 水質調査結果

分析結果概要を表 4-2-1-1、異性体および同族体別調査結果を表 4-2-1-2 ~表 4-2-1-7 に示す。また、同族体および異性体のパターンを図 4-2-1-1 ~図 4-2-1-6 に示す。

本調査の結果は、0.049~0.054pg-TEQ/Lであり、各地点とも環境基準を下回っていた。 令和5年度「大阪府ダイオキシン類常時監視結果」(巻末参考資料参照)によると、大 阪湾における水質の濃度は 0.031~0.041pg-TEQ/L であり、今回の結果はそれらの結果と 比較するとほぼ同じ値であった。

表4-2-1-1 分析結果概要(水質)

試料名	試験項目	実測濃度	毒性当量
		(pg/L)	(pg-TEQ/L)
	PCDDs+PCDFs	1.4	0.046
St.1	Co-PCBs	8.8	0.0049
	ダイオキシン類	-	0.051
	PCDDs+PCDFs	2.8	0.048
St.2	Co-PCBs	11	0.0030
	ダイオキシン類	_	0.051
	PCDDs+PCDFs	1.9	0.047
St.3	Co-PCBs	11	0.0070
	ダイオキシン類	_	0.054
	PCDDs+PCDFs	1.8	0.046
St.4	Co-PCBs	9.2	0.0029
	ダイオキシン類	_	0.049
	PCDDs+PCDFs	3.8	0.049
St.S-1	Co-PCBs	12	0.0030
	ダイオキシン類	_	0.052
	PCDDs+PCDFs	2.0	0.047
St.S-2	Co-PCBs	17	0.0032
	ダイオキシン類		0.051

この表は、ダイオキシン類測定結果から一部のデータを抜粋した参考資料である。

毒性当量:2,3,7,8-T₄CDD 毒性当量を示す。

毒性等価係数は以下の係数を適用した。

PCDDs, PCDFs: WHO/IPCS (2006)

Co-PCBs: WHO/IPCS(2006)

毒性当量は検出下限未満のものは、試料における検出下限の1/2の値を用いて算出したものである。

表 4-2-1-2 ダイオキシン類調査結果 (水質: St. 1)

	試料名	St.1		試料媒	体			水質	
	採取日 :	025年1月23日		試料量	(L)				
/							毒性	当量	
		検出下限値	定量下限值	実測濃度		WHO-	TEF,2006 *1	WHO-	TEF,2006 *2
		pg/L	pg/L	pg/L		p	g-TEQ/L	pį	g-TEQ/L
	1,3,6,8-TeCDD	0.03	0.08	(0.07)		_		_
	1,3,7,9-TeCDD	0.03	0.08	N.D.			_		_
	2,3,7,8-TeCDD	0.03	0.08	N.D.		×1	0	×1	0.015
	TeCDDs	0.03	0.08	0.11			_		-
ダ	1,2,3,7,8-PeCDD	0.02	0.07	N.D.		×1	0	×1	0.01
イ	PeCDDs	0.02	0.07	N.D.			_		_
オ	1,2,3,4,7,8-HxCDD	0.04	0.14	N.D.		× 0.1	0	× 0.1	0.002
+	1,2,3,6,7,8-HxCDD	0.05	0.15	N.D.			0		0.0025
シ	1,2,3,7,8,9-HxCDD	0.04	0.15	N.D.			0		0.002
ン	HxCDDs	0.04	0.14	0.20			_		_
	1,2,3,4,6,7,8-H _P CDD	0.05	0.18	(0.08)	× 0.01	0	× 0.01	0.0008
	HpCDDs	0.05	0.18	0.27			_	*******************************	_
	oCDD	0.05	0.16	0.76		×0.0003	0.000228	× 0.0003	0.000228
	Total PCDDs	_	_	1.3			0.00023		0.033
	1,2,7,8-TeCDF	0.03	0.09	N.D.			_		_
	2,3,7,8-TeCDF	0.03	0.09	N.D.		×0.1	0	× 0.1	0.0015
	TeCDFs	0.03	0.09	N.D.			_		_
	1,2,3,7,8-PeCDF	0.03	0.09	N.D.		× 0.03	0	× 0.03	0.00045
	2,3,4,7,8-PeCDF	0.03	0.09	N.D.		×0.3	0	×0.3	0.0045
ジ	PeCDFs	0.03	0.09	N.D.					_
ベ	1,2,3,4,7,8-HxCDF	0.03	0.10	N.D.		× 0.1	0	× 0.1	0.0015
ン	1,2,3,6,7,8-HxCDF	0.03	0.11	N.D.			0		0.0015
ゾ	1,2,3,7,8,9-HxCDF	0.05	0.18	N.D.			0		0.0025
フ	2,3,4,6,7,8-HxCDF	0.03	0.11	N.D.			0		0.0015
ラ	HxCDFs	0.03	0.10	N.D.			_		_
ン	1,2,3,4,6,7,8-H _P CDF	0.03	0.11	N.D.		× 0.01	0	× 0.01	0.00015
	1,2,3,4,7,8,9-H _P CDF	0.05	0.15	N.D.			0		0.00025
	HpCDFs	0.03	0.11	N.D.			_		_
	OCDF	0.05	0.17	(0.06)	× 0.0003	0	× 0.0003	0.000018
	Total PCDFs	-	-	(0.06)		0		0.014
	Total PCDDs+PCDFs	-	-	1.4			0.00023		0.046
	3,3',4,4'-TeCB(#77)	0.03	0.10	1.9		× 0.0001	0.00019	× 0.0001	0.00019
	3,4,4',5-TeCB(#81)	0.03	0.11	(0.09)	× 0.0003	0	× 0.0003	0.000027
	3,3',4,4',5-PeCB(#126)	0.04	0.14	(0.04)	× 0.1	0	× 0.1	0.004
	3,3',4,4',5,5'-HxCB(#169)	0.03	0.09	N.D.		× 0.03	0	× 0.03	0.00045
С	Non-ortho PCBs			2.0		W 0 00000	0.00019	W 0 00000	0.0047
0	2',3,4,4',5-PeCB(#123)	0.04	0.12	(0.10)	× 0.00003	0	× 0.00003	0.0000030
	2,3',4,4',5-PeCB(#118)	0.05	0.18	4.2		× 0.00003	0.000126	× 0.00003	0.000126
Р	2,3,3',4,4'-PeCB(#105)	0.04	0.14	2.0		× 0.00003	0.000060	× 0.00003	0.000060
С	2,3,4,4',5+3,3',4,5,5'-PeCB(#114+#1		0.12	0.14		× 0.00003	0.0000042	× 0.00003 × 0.00003	0.0000042
В	2,3',4,4',5,5'-HxCB(#167)	0.05	0.17	(0.09)	× 0.00003	0	× 0.00003	0.0000027
S	2,3,3',4,4',5-HxCB(#156)	0.05	0.16	0.22		× 0.00003	0.0000066	× 0.00003	0.0000066
	2,3,3',4,4',5'-HxCB(#157)	0.04	0.14	N.D.		× 0.00003	0	× 0.00003	0.0000006
	2,3,3',4,4',5,5'-HpCB(#189)	0.05	0.15	N.D.	**********	^ 0.00003	0	^ 0.00003	0.00000075
	Mono-ortho PCBs	-	-	6.7			0.00020	1	0.00020
<u> </u>	Total Co-PCBs	-	-	8.8			0.00039	1	0.0049
<u> </u>	Total PCDDs+PCDFs+Co-PCBs 毒性当量とは毒性等価係数を用いて、2,3,7,8-		-	10 0.5.5.1. = 1.3.4.5.5		- 7	0.00061		0.051

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量 * 1: 定量下限未満の実測濃度を0として算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、表示上の数値を合計しても一致しない場合がある。

表 4-2-1-3 ダイオキシン類調査結果 (水質: St. 2)

	試料名		St.2		試料媒体	本			水質	
	採取日	202	5年1月23日		試料量(L)			20.2	
_						Ī		毒性	当量	
Ī			検出下限値	定量下限値	実測濃度		WHO-	TEF,2006 *1		TEF,2006 *2
			pg/L	pg/L	pg/L		pg	g-TEQ/L	pį	g-TEQ/L
	1,3,6,8-TeCDD		0.03	0.09	0.16			_		_
1	1,3,7,9-TeCDD		0.03	0.09	0.10			_		_
	2,3,7,8-TeCDD		0.03	0.09	N.D.	>	×1	0	×1	0.015
. [·	TeCDDs		0.03	0.09	0.27	T		_		_
ダ	1,2,3,7,8-PeCDD		0.02	0.07	N.D.	>	×1	0	×1	0.01
イ	PeCDDs		0.02	0.07	0.08			_		_
オ	1,2,3,4,7,8-HxCDD		0.04	0.14	N.D.	>	× 0.1	0	× 0.1	0.002
+	1,2,3,6,7,8-HxCDD		0.05	0.15	N.D.			0		0.0025
シ	1,2,3,7,8,9-HxCDD		0.05	0.15	N.D.			0		0.0025
ン	HxCDDs		0.04	0.14	0.21			_		_
	1,2,3,4,6,7,8-HpCDD		0.05	0.18	(0.13) ,	× 0.01	0	× 0.01	0.0013
	HpCDDs	000000000000000000000000000000000000000	0.05	0.18	0.41			_	•	_
	oCDD		0.05	0.17	1.8	>	× 0.0003	0.00054	× 0.0003	0.00054
	Total PCDDs		_	_	2.8			0.00054		0.034
	1,2,7,8-TeCDF		0.03	0.09	N.D.			-		_
	2,3,7,8-TeCDF		0.03	0.09	N.D.	,	× 0.1	0	× 0.1	0.0015
-	TeCDFs		0.03	0.09	N.D.			_		_
1	1,2,3,7,8-PeCDF		0.03	0.09	N.D.	>	× 0.03	0	× 0.03	0.00045
	2,3,4,7,8-PeCDF		0.03	0.09	N.D.	>	× 0.3	0	× 0.3	0.0045
ジ	PeCDFs		0.03	0.09	N.D.			_		_
ベ	1,2,3,4,7,8-HxCDF		0.03	0.10	N.D.	>	× 0.1	0	× 0.1	0.0015
ン	1,2,3,6,7,8-HxCDF		0.03	0.11	N.D.			0		0.0015
-	1,2,3,7,8,9-HxCDF		0.05	0.18	N.D.			0		0.0025
· -	2,3,4,6,7,8-HxCDF		0.03	0.12	N.D.			0		0.0015
ラ	HxCDFs		0.03	0.10	N.D.			_		_
ン	1,2,3,4,6,7,8-H _p CDF		0.03	0.11	(0.05) ,	× 0.01	0	× 0.01	0.0005
	1,2,3,4,7,8,9-H _p CDF		0.05	0.15	N.D.			0		0.00025
-	HpCDFs		0.03	0.11	(0.05)		_		_
	ocdf		0.05	0.18	N.D.	,	× 0.0003	0	× 0.0003	0.0000075
	Total PCDFs		-	-	(0.05)		0		0.014
	Total PCDDs+PCDFs		-	-	2.8	_		0.00054		0.048
	3,3',4,4'-TeCB(#77)		0.03	0.10	2.0		× 0.0001	0.0002	×0.0001	0.0002
	3,4,4',5-TeCB(#81)		0.03	0.11			× 0.0003	0	×0.0003	0.000030
	3,3',4,4',5-PeCB(#126)		0.04	0.14	N.D.		× 0.1	0	× 0.1	0.002
-	3,3',4,4',5,5'-HxCB(#169)		0.03	0.09	N.D.		× 0.03	0	× 0.03	0.00045
l f	Non-ortho PCBs			_	2.1	\downarrow	w 0 00000	0.00020	W 0 00000	0.0027
	2',3,4,4',5-PeCB(#123)		0.04	0.12			× 0.00003	0	× 0.00003	0.0000027
	2,3',4,4',5-PeCB(#118)		0.06	0.18	5.7		× 0.00003	0.000171	× 0.00003	0.000171
	2,3,3',4,4'-PeCB(#105)	#114 · #10=	0.04	0.14	2.5		× 0.00003	0.000075	× 0.00003	0.000075
-	2,3,4,4',5+3,3',4,5,5'-PeCB(#114+#127	0.04	0.12	0.18		× 0.00003	0.0000054	× 0.00003	0.0000054
-	2,3',4,4',5,5'-HxCB(#167)		0.05	0.18		<u></u>	× 0.00003	0	× 0.00003	0.0000045
-	2,3,3',4,4',5-HxCB(#156)		0.05	0.16	0.34		× 0.00003	0.0000102	× 0.00003	0.0000102
H	2,3,3',4,4',5'-HxCB(#157)		0.04	0.15			× 0.00003	0	× 0.00003	0.0000021
-	2,3,3',4,4',5,5'-HpCB(#189)		0.05	0.16	N.D.		× 0.00003	0	× 0.00003	0.00000075
F	Mono-ortho PCBs		_		9.1	4		0.00026		0.00027
	Total Co-PCBs				11	4		0.00046		0.0030
	Total PCDDs+PCDFs+Co-	PCBs	-	-	14			0.0010	1	0.051

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量 * 1: 定量下限未満の実測濃度をOとして算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、表示上の数値を合計しても一致しない場合がある。

表 4-2-1-4 ダイオキシン類調査結果 (水質: St. 3)

試料名 St.3					試料	媒体		水質			
採取日 202			25年1月23日		試料量(L)			20.3			
					2111_11		毒性当量				
			検出下限値	定量下限値	実測濃度		WHO-TEF,2006 *1		WHO-TEF,2006 *2		
			pg/L	pg/L		pg/L		p	g-TEQ/L	pį	g-TEQ/L
	1,3,6,8-TeCDD		0.03	0.09	(0.08)		_		_
	1,3,7,9-TeCDD		0.03	0.09	(0.06)		_		_
	2,3,7,8-TeCDD		0.03	0.09		N.D.		×1	0	×1	0.015
	TeCDDs		0.03	0.09	l	0.16			_		_
ダ	1,2,3,7,8-PeCDD		0.02	0.07		N.D.		×1	0	×1	0.01
1	PeCDDs		0.02	0.07		N.D.			_		_
オ	1, 2 ,3,4,7,8-HxCDD		0.04	0.14		N.D.		× 0.1	0	× 0.1	0.002
+	1,2,3,6,7,8-HxCDD		0.05	0.15		N.D.			0		0.0025
シ	1,2,3,7,8,9-HxCDD		0.04	0.15		N.D.			0		0.002
ン	HxCDDs		0.04	0.14		0.16			_		_
	1,2,3,4,6,7,8-H _P CDD		0.05	0.18	(0.12)	× 0.01	0	× 0.01	0.0012
	HpCDDs		0.05	0.18		0.29			_	***************************************	_
	OCDD		0.05	0.16		1.2		× 0.0003	0.00036	× 0.0003	0.00036
	Total PCDDs		_	_		1.8			0.00036		0.033
	1,2,7,8-TeCDF		0.03	0.09		N.D.			_		_
	2,3,7,8-TeCDF		0.03	0.09		N.D.		× 0.1	0	× 0.1	0.0015
	TeCDFs	~~~~	0.03	0.09		N.D.		***************************************	_		_
	1,2,3,7,8-PeCDF		0.03	0.09		N.D.		× 0.03	0	× 0.03	0.00045
	2,3,4,7,8-P eCDF		0.03	0.09	ļ	N.D.		×0.3	0	× 0.3	0.0045
ジ	PeCDFs		0.03	0.09		N.D.			_		_
ベ	1,2,3,4,7,8-HxCDF		0.03	0.10		N.D.		× 0.1	0	× 0.1	0.0015
ン	1,2,3,6,7,8-HxCDF		0.03	0.11		N.D.			0		0.0015
-	1,2,3,7,8,9-HxCDF		0.05	0.18		N.D.			0		0.0025
	2,3,4,6,7,8-HxCDF		0.03	0.12		N.D.			0		0.0015
-	HxCDFs		0.03	0.10		N.D.			_		_
ン	1,2,3,4,6,7,8-H _p CDF		0.03	0.11		N.D.		× 0.01	0	× 0.01	0.00015
	1,2,3,4,7,8,9-H _p CDF		0.05	0.15	ļ	N.D.			0		0.00025
	HpCDFs		0.03	0.11	(0.05)		_		_
	ocdf		0.05	0.18		N.D.		× 0.0003	0	× 0.0003	0.0000075
	Total PCDFs		-	-	(0.05)		0		0.014
<u> </u>	Total PCDDs+PCDFs		-	-		1.9			0.00036		0.047
	3,3',4,4'-TeCB(#77)		0.03	0.10		2.3		× 0.0001	0.00023	× 0.0001	0.00023
	3,4,4',5-TeCB(#81)		0.03	0.11	(0.09)	× 0.0003 × 0.1	0	× 0.0003	0.000027
	3,3',4,4',5-PeCB(#126)		0.04	0.14	(0.06)		0	× 0.03	0.006
	3,3',4,4',5,5'-HxCB(#169)		0.03	0.09		N.D.		× 0.03	0	^ 0.03	0.00045
	Non-ortho PCBs		-	-		2.5		× 0.00003	0.00023	× 0.00003	0.0067
	2',3,4,4',5-PeCB(#123)		0.04	0.12	(0.11)	× 0.00003	0 000100	× 0.00003	0.0000033
	2,3',4,4',5-PeCB(#118)		0.06	0.18	l	5.4		× 0.00003	0.000162	× 0.00003	0.000162
	2,3,3',4,4'-PeCB(#105) 2,3,4,4',5+3,3',4,5,5'-PeCB	(#11/1 : #127	0.04 0.04	0.14		2.5		× 0.00003	0.000075 0.0000048	× 0.00003	0.000075 0.0000048
		(#114+#127			,	0.16	```	× 0.00003		× 0.00003	
	2,3',4,4',5,5'-HxCB(#167) 2,3,3',4,4',5-HxCB(#156)		0.05	0.18		0.15)	× 0.00003	0.0000081	× 0.00003	0.0000045
	2,3,3',4,4',5'-HxCB(#157)		0.05 0.04	0.16 0.15		0.27)	× 0.00003	0.0000081	× 0.00003	0.0000081 0.0000027
	2,3,3',4,4',5,5'-HpCB(#189)							× 0.00003	0	× 0.00003	
	Z,3,3 ,4,4 ,5,5 - HPCD(#109) Mono-ortho PCBs		0.05 –	0.16	 	N.D.			0.00025		0.00000075 0.00026
	Total Co-PCBs		_	_	-	8.6 11			0.00025		0.00026
	Total PCDDs+PCDFs+Co-	-DCRs	_	_		13			0.00048	-	0.0070
1 #	性当量とは毒性等価係数を用い		CDDの毒性!		L のであ		9外で2	L ある。	0.00004	I	0.007

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量 * 1: 定量下限未満の実測濃度をOとして算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、表示上の数値を合計しても一致しない場合がある。

表 4-2-1-5 ダイオキシン類調査結果 (水質: St. 4)

接取日 2025年1月23日 接取日 2025年1月23日 接取日 2025年1月23日 接取日 2026年2月25日 接取日 2025年2月25日 接取日 2025年2月25日 202	試料名 St.4					試料	媒体		水質			
#出下記録 定量下限数		採取日	2025年1月23日	25年1月23日			量 (L)	20.2				
1.36.8-TeCDD		,										
13.6.8-TeCDD				定量下限值		実測濃度		WHO-	TEF,2006 *1	WHO-TEF,2006 *2		
13.79-TeCDD			pg/L	pg/L		pg/L		р	g-TEQ/L	p	g-TEQ/L	
2.37.8−1-cDDs		1,3,6,8-TeCDD	0.03	0.09	(0.08)		_		_	
TeCDDS		1,3,7,9-TeCDD	0.03	0.09	(0.04)		_		_	
Form		2,3,7,8-TeCDD	0.03	0.09		N.D.		×1	0	×1	0.015	
P-CDDS 0.02 0.07 N.D. "€1 0.000 -		TeCDDs	0.03	0.09	l	0.16			_		_	
1.2.3.4.7.8-HxCDD	ダ	1,2,3,7,8-PeCDD	0.02	0.07		N.D.		×1	0	×1	0.01	
7 1,2,3,6,7,8-HxCDD 0.05 0.15 N.D. 0 0.0025 5 12,3,3,8,9-HxCDD 0.05 0.15 N.D. 0 0.0025 HxCDDs 0.04 0.14 0.26 — — — 112,3,4,6,7,8-HxCDD 0.05 0.18 N.D. ×0.01 0.00025 HxCDDs 0.05 0.18 N.D. ×0.01 0.00033 0.00033 Total PCDDs 0.05 0.17 1.1.1 ×0.00033 0.00033 0.00033 Total PCDDs — — 1.7 0.00033 0.00033 0.00033 12,7,8-TeCDF 0.03 0.09 N.D. ×0.1 0 ×0.01 0.0015 TeCDFs 0.03 0.09 N.D. ×0.01 0 ×0.01 0.0015 TeCDFs 0.03 0.09 N.D. ×0.03 0 ×0.03 0.0045 YeCDFs 0.03 0.09 N.D. ×0.0 ×0.03 0.00045 YeCDF	1	PeCDDs	0.02	0.07		N.D.			_		_	
1.2.3,7.8,9-HxCDD	オ	1,2,3,4,7,8-HxCDD	0.04	0.14		N.D.		× 0.1	0	× 0.1	0.002	
HxCDDs	+	1,2,3,6,7,8-HxCDD	0.05	0.15		N.D.			0		0.0025	
1.2.3.4.6.7.8-HpCDD	シ	1,2,3,7,8,9-HxCDD	0.05	0.15		N.D.			0		0.0025	
HaCDDS	ン	HxCDDs	0.04	0.14		0.26			_		_	
OCDD		1,2,3,4,6,7,8-HpCDD	0.05	0.18		N.D.		× 0.01	0	× 0.01	0.00025	
Total PCDDs		HpCDDs	0.05	0.18	(0.13)		_		_	
1,2,7,8-TeCDF		OCDD	0.05	0.17		1.1		× 0.0003	0.00033	× 0.0003	0.00033	
2.3.7.8−TeCDF		Total PCDDs	_	_		1.7			0.00033		0.033	
TeCDFs		1,2,7,8-TeCDF	0.03	0.09		N.D.			_		_	
1.2.3.7.8-PeCDF		2,3,7,8-TeCDF	0.03	0.09		N.D.		×0.1	0	× 0.1	0.0015	
2,3,4,7,8-PeCDF		TeCDFs	0.03	0.09		N.D.			_		_	
PeCDFs		1,2,3,7,8-PeCDF	0.03	0.09		N.D.		× 0.03	0	× 0.03	0.00045	
X 1,2,3,4,7,8-HxCDF 0.03 0.10 N.D. ×0.1 0 ×0.015 0.0015 V 1,2,3,6,7,8-HxCDF 0.03 0.11 N.D. 0 0.0015 J 1,2,3,7,8,9-HxCDF 0.03 0.12 N.D. 0 0.0025 Z 2,3,4,6,7,8-HxCDF 0.03 0.12 N.D. 0 0.0015 HxCDFs 0.03 0.11 N.D. - - - 1,2,3,4,7,8,9-HyCDF 0.05 0.15 N.D. 0 0.00025 HpCDFs 0.03 0.11 N.D. - - - OCDF 0.05 0.15 N.D. 0 0.00025 </td <td></td> <td>2,3,4,7,8-PeCDF</td> <td>0.03</td> <td>0.09</td> <td></td> <td>N.D.</td> <td></td> <td>×0.3</td> <td>0</td> <td>× 0.3</td> <td>0.0045</td>		2,3,4,7,8-PeCDF	0.03	0.09		N.D.		×0.3	0	× 0.3	0.0045	
> 1.2.3.6.7.8−HxCDF 0.03 0.11 N.D. 0 0.0015 J 1.2.3.7.8.9−HxCDF 0.05 0.18 N.D. 0 0.0025 Z 2.3.4.6.7.8−HxCDF 0.03 0.12 N.D. 0 0.0015 HxCDFs 0.03 0.10 N.D. − − − J 1.2.3.4.7.8,9−HpCDF 0.03 0.11 N.D. − − − HpCDFs 0.03 0.11 N.D. − − − − OCDF 0.05 0.18 (0.10) ×0.0003 0 ×0.0003 0.00003 Total PCDFs −	ジ	PeCDFs	0.03	0.09		N.D.			_		_	
J 1,2,3,7,8,9-HxCDF 0.05 0.18 N.D. 0 0.0025 Z 2,3,4,6,7,8-HxCDF 0.03 0.12 N.D. 0 0.0015 HxCDFs 0.03 0.10 N.D. ~ ~ ~ Z 1,2,3,4,6,7,8-HpCDF 0.03 0.11 N.D. ~ 0 0.00015 HpCDFs 0.03 0.11 N.D. ~ ~ ~ ~ OCDF 0.05 0.18 (0.10) × 0.0003 0 × 0.0003 0.00003 Total PCDFs - - (0.10) × 0.0003 0 × 0.0003 0.00003 3,4,4'5-TeCB(#77) 0.03 0.10 1.8 × 0.0001 0.00018 × 0.0001 3,3',4,4'5-TeCB(#81) 0.03 0.11 (0.09) × 0.0003 0 × 0.0003 0.00027 3,3',4,4'5-TeCB(#169) 0.03 0.01 1.8 × 0.0001 0.0018 × 0.0003 0.00027 3,3',4,4'5-PeCB(#126) 0.04 </td <td>ベ</td> <td>1,2,3,4,7,8-HxCDF</td> <td>0.03</td> <td>0.10</td> <td></td> <td>N.D.</td> <td></td> <td>× 0.1</td> <td>0</td> <td>× 0.1</td> <td>0.0015</td>	ベ	1,2,3,4,7,8-HxCDF	0.03	0.10		N.D.		× 0.1	0	× 0.1	0.0015	
D 2,3,4,6,7,8-HxCDF 0.03 0.12 N.D. 0 0.0015 D HxCDFs 0.03 0.10 N.D. - - L2,3,4,6,7,8-HpCDF 0.03 0.11 N.D. ×0.01 0 ×0.01 0.00015 HpCDFs 0.03 0.11 N.D. - - - - OCDF 0.05 0.18 (0.10) ×0.0003 0 ×0.0003 0.00030 Total PCDFs - - (0.10) ×0.0003 0 ×0.0003 0.0046 Total PCDDs+PCDFs - - (0.10) ×0.0003 0 ×0.0003 0.046 3.3',4,4'-TeCB(#77) 0.03 0.10 1.8 ×0.0001 0.0018 ×0.0001 0.0018 3.3',4,4'.5-TeCB(#81) 0.03 0.11 (0.09) ×0.0003 0 ×0.01 0.002 3.3',4,4'.5-PeCB(#126) 0.04 0.14 N.D. ×0.1 0 ×0.1 0.002 3.3',4,4'.5-PeCB(#169) 0.03 0.09 N.D.	ン	1,2,3,6,7,8-HxCDF	0.03	0.11		N.D.			0		0.0015	
HxCDFs	ゾ	1,2,3,7,8,9-HxCDF	0.05	0.18		N.D.			0		0.0025	
1,2,3,4,6,7,8-H _p CDF	フ	2,3,4,6,7,8-HxCDF	0.03	0.12		N.D.			0		0.0015	
1.2.3.4.7.8.9-HpCDF	ラ	HxCDFs	0.03	0.10		N.D.			_		_	
HpCDFs	ン	1,2,3,4,6,7,8-HpCDF	0.03	0.11		N.D.		× 0.01	0	× 0.01	0.00015	
OCDF 0.05 0.18 (0.10) > ×0.0003 0 ×0.0003 0.000030 Total PCDFs - - (0.10)) 0 0.014 Total PCDDs+PCDFs - - 1.8 0.00013 0.0003 0.046 3.3'.4.4'-TeCB(#77) 0.03 0.10 1.8 ×0.0001 0.00018 ×0.0001 0.00018 3.4.4'.5-TeCB(#81) 0.03 0.11 (0.09)) ×0.0003 0 ×0.0003 0.000027 3.3'.4.4'.5-TeCB(#126) 0.04 0.14 N.D. ×0.1 0 ×0.1 0.002 3.3'.4.4'.5-TeCB(#169) 0.03 0.09 N.D. ×0.03 0 ×0.03 0.00045 C Non-ortho PCBs - - 1.9 0.00018 0.0027 o 2'.3.4.4'.5-PeCB(#123) 0.04 0.12 (0.07)) ×0.0003 0 ×0.00003 0.0000021 p 2.3.3'.4.4'.5-PeCB(#118) 0.06 0.18 4.5 ×0.00003 0.000135 ×0.000		1,2,3,4,7,8,9-H _P CDF	0.05	0.15		N.D.			0		0.00025	
Total PCDFs		HpCDFs	0.03	0.11		N.D.			_		_	
Total PCDDs+PCDFs		oCDF	0.05	0.18	(0.10)	×0.0003	0	× 0.0003	0.000030	
3,3',4,4'-TeCB(#177)		Total PCDFs	-	-	(0.10)		0		0.014	
3.4.4',5-TeCB(#81) 3.3',4.4',5-PeCB(#126) 3.3',4.4',5-FeCB(#126) 3.3',4.4',5-FeCB(#126) 3.3',4.4',5-FeCB(#126) 3.3',4.4',5-FeCB(#126) 3.3',4.4',5-FeCB(#126) 3.3',4.4',5-FeCB(#126) 3.3',4.4',5-FeCB(#126) 3.3',4.4',5-FeCB(#126) 3.3',4.4',5-FeCB(#126) 3.3',4.4',5-FeCB(#128) 3.3',4.4',5-FeCB(#123) 3.3',4.4',5-FeCB(#123) 3.3',4.4',5-FeCB(#118) 3.3',4.4',5-FeCB(#189) 3.3		Total PCDDs+PCDFs	_	-		1.8			0.00033		0.046	
3,3',4,4',5-PeCB(#126) 0.04 0.14 N.D. ×0.1 0 ×0.000027			0.03	0.10		1.8			0.00018		0.00018	
C Non-ortho PCBs C Non			0.03	0.11	(0.09)		0		0.000027	
C Non-ortho PCBs 1.9 0.00018 0.0007 o 2',3,4,4',5-PeCB(#123) 0.04 0.12 (0.07) ×0.00003 0 ×0.00003 0.0000021 2,3',4,4',5-PeCB(#118) 0.06 0.18 4.5 ×0.0003 0.000135 ×0.0003 0.000135 P 2,3,3',4,4'-PeCB(#105) 0.04 0.14 2.2 ×0.0003 0.000066 ×0.0003 0.000066 C 2,3,4,4',5-3,3',4,5,5'-PeCB(#114+#127 0.04 0.12 0.16 ×0.0003 0.000048 ×0.0003 0.000048 B 2,3',4,4',5,5'-HxCB(#167) 0.05 0.18 (0.08) ×0.0003 0 0.000048 ×0.0003 0.0000024 s 2,3,3',4,4',5-HxCB(#156) 0.05 0.16 0.24 ×0.0003 0.000072 ×0.0003 0.0000072 2,3,3',4,4',5'-HxCB(#157) 0.04 0.15 (0.07) ×0.0003 0 ×0.0003 0.0000021 2,3,3',4,4',5,5'-HpCB(#189) 0.05 0.16 N.D. ×0.00003 0 ×0.00003 0.0000075 Mono-ortho PCBs 7.2 0.00021 0.00022 Total Co-PCBs 9.2 0.00039 0.00029			0.04	***************************************		N.D.			0		0.002	
o 2',3,4,4',5-PeCB(#123) 0.04 0.12 (0.07) > 0.00003 0 0.00003 0.000002 2,3',4,4',5-PeCB(#118) 0.06 0.18 4.5 × 0.00003 0.000135 × 0.00003 0.000135 P 2,3,3',4,4'-PeCB(#105) 0.04 0.14 2.2 × 0.00003 0.000066 × 0.00003 0.000066 C 2,3,4,4',5-3,3',4,5,5'-PeCB(#114+#127) 0.04 0.12 0.16 × 0.00003 0.0000048 × 0.00003 0.0000048 B 2,3',4,4',5,5'-HxCB(#167) 0.05 0.18 (0.08) × 0.00003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.0000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.0000003 0.000003 0.000003 0.00000072		3,3',4,4',5,5'-HxCB(#169)	0.03	0.09		N.D.		× 0.03	0	× 0.03	0.00045	
2,3,4,4',5-PeCB(#118)	С		-	_		1.9			0.00018		0.0027	
P 2,3,3',4,4'-PeCB(#105) 0.04 0.14 2.2 ×0.00003 0.000066 ×0.00003 0.000066 C 2,3,4,4',5+3,3',4,5,5'-PeCB(#114+#127) 0.04 0.12 0.16 ×0.00003 0.0000048 ×0.00003 0.0000048 B 2,3',4,4',5,5'-HxCB(#167) 0.05 0.18 (0.08)) ×0.00003 0 ×0.00003 0.0000024 s 2,3,3',4,4',5-HxCB(#156) 0.05 0.16 0.24 ×0.00003 0.0000072 ×0.00003 0.0000072 2,3,3',4,4',5-HxCB(#157) 0.04 0.15 (0.07) ×0.00003 0 ×0.00003 0.0000021 2,3,3',4,4',5,5'-HpCB(#189) 0.05 0.16 N.D. ×0.00003 0 ×0.00003 0.00000075 Mono-ortho PCBs - - 7.2 0.00021 0.00022 Total Co-PCBs - - 9.2 0.00039 0.00029			0.04	0.12	(0.07)	×0.00003	0	× 0.00003	0.0000021	
$ \begin{array}{c} \textbf{C} \\ \textbf{2}, 3, 4, 4', 5, 5' - \textbf{PeCB}(\#114 + \#127) \\ \textbf{B} \\ \textbf{2}, 3', 4, 4', 5, 5' - \textbf{HxCB}(\#167) \\ \textbf{S} \\ \textbf{2}, 3, 3', 4, 4', 5, 5' - \textbf{HxCB}(\#156) \\ \textbf{2}, 3, 3', 4, 4', 5, 5' - \textbf{HxCB}(\#157) \\ \textbf{2}, 3, 3', 4, 4', 5, 5' - \textbf{HxCB}(\#157) \\ \textbf{2}, 3, 3', 4, 4', 5, 5' - \textbf{HxCB}(\#157) \\ \textbf{2}, 3, 3', 4, 4', 5, 5' - \textbf{HxCB}(\#189) \\ \textbf{0}, 05 \\ \textbf{0}, 16 \\ \textbf{0}, 15 \\ \textbf{0}, 16 \\ \textbf{0}$			0.06	0.18					0.000135		0.000135	
B 2,3',4,4',5,5'-HxCB(#167) 0.05 0.18 (0.08) ×0.00003 0 ×0.000024 s 2,3,3',4,4',5-HxCB(#156) 0.05 0.16 0.24 ×0.0003 0.0000072 ×0.00003 0.0000072 2,3,3',4,4',5'-HxCB(#157) 0.04 0.15 (0.07) ×0.00003 0 ×0.00003 0.0000021 2,3,3',4,4',5,5'-HpCB(#189) 0.05 0.16 N.D. ×0.00003 0 ×0.00003 0.0000075 Mono-ortho PCBs 7.2 0.00021 0.00022 Total Co-PCBs - 9.2 0.00039 0.00039	Р			0.14		2.2						
s 2,3,3',4,4',5-HxCB(#156) 0.05 0.16 0.24 ×0.00003 0.0000072 ×0.00003 0.0000072 2,3,3',4,4',5'-HxCB(#157) 0.04 0.15 (0.07) ×0.00003 0 ×0.00003 0.0000021 2,3,3',4,4',5,5'-HpCB(#189) 0.05 0.16 N.D. ×0.00003 0 ×0.00003 0.00000075 Mono-ortho PCBs 7.2 0.00021 0.00022 Total Co-PCBs - 9.2 0.00039 0.00029	С		127 0.04	0.12		0.16			0.0000048		0.0000048	
2,3,3',4,4',5'-HxCB(#157)	В				()					
2,3,3',4,4',5,5'-HpCB(#189) 0.05 0.16 N.D. ×0.00003 0.00000075 Mono-ortho PCBs - - 7.2 0.00021 0.00022 Total Co-PCBs - - 9.2 0.00039 0.0029	s								0.0000072			
Mono-ortho PCBs - - 7.2 0.00021 0.00022 Total Co-PCBs - - 9.2 0.00039 0.0029			0.04	0.15	(0.07)		0			
Total Co-PCBs 9.2 0.00039 0.0029		······································	0.05	0.16	 			×0.00003		× 0.00003		
			-	-								
Total PCDDs+PCDFs+Co-PCBs 11 0.00072 0.049			-	-		9.2						
1. 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり、計量対象外である。			-	_					0.00072		0.049	

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量 * 1: 定量下限未満の実測濃度を0として算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、表示上の数値を合計しても一致しない場合がある。

表 4-2-1-6 ダイオキシン類調査結果 (水質: St. S-1)

試料名 St.S-1					試料	媒体		水質			
	採取日	2025年1月23日	l	試料量(L)			20.4				
							毒性当量				
			定量下限值	実測濃度		WHO-TEF,2006 *1		WHO-TEF,2006 *2			
		pg/L	pg/L		pg/L		р	g-TEQ/L	p	g-TEQ/L	
	1,3,6,8-TeCDD	0.03	0.09		0.10			_		_	
	1,3,7,9-TeCDD	0.03	0.09	(0.05)		_		_	
	2,3,7,8-TeCDD	0.03	0.09		N.D.		×1	0	×1	0.015	
	TeCDDs	0.03	0.09		0.19			_		_	
ダ	1,2,3,7,8-PeCDD	0.02	0.07		N.D.		×1	0	×1	0.01	
1	PeCDDs	0.02	0.07		N.D.			_		_	
オ	1,2,3,4,7,8-HxCDD	0.04	0.14		N.D.		× 0.1	0	× 0.1	0.002	
+	1,2,3,6,7,8-HxCDD	0.05	0.15		N.D.			0		0.0025	
シ	1,2,3,7,8,9-HxCDD	0.04	0.15		N.D.			0		0.002	
ン	HxCDDs	0.04	0.14		0.41			_		_	
	1,2,3,4,6,7,8-H _p CDD	0.05	0.18		0.28		× 0.01	0.0028	× 0.01	0.0028	
	HpCDDs	0.05	0.18		0.80			_	***************************************	_	
	oCDD	0.05	0.16		2.3		× 0.0003	0.00069	× 0.0003	0.00069	
	Total PCDDs	_	_		3.7			0.0035		0.035	
	1,2,7,8-TeCDF	0.03	0.09		N.D.			_		_	
	2,3,7,8-TeCDF	0.03	0.09		N.D.		×0.1	0	× 0.1	0.0015	
	TeCDFs	0.03	0.09		N.D.			_		_	
	1,2,3,7,8-PeCDF	0.03	0.09		N.D.		× 0.03	0	× 0.03	0.00045	
	2,3,4,7,8-PeCDF	0.03	0.09		N.D.		× 0.3	0	× 0.3	0.0045	
ジ	PeCDFs	0.03	0.09		N.D.			_		_	
ベ	1,2,3,4,7,8-HxCDF	0.03	0.10		N.D.		× 0.1	0	× 0.1	0.0015	
ン	1,2,3,6,7,8-HxCDF	0.03	0.11		N.D.			0		0.0015	
ゾ	1,2,3,7,8,9-HxCDF	0.05	0.18		N.D.			0		0.0025	
フ	2,3,4,6,7,8-HxCDF	0.03	0.12		N.D.			0		0.0015	
ラ	HxCDFs	0.03	0.10		N.D.			_		_	
ン	1,2,3,4,6,7,8-H _p CDF	0.03	0.11		N.D.		× 0.01	0	× 0.01	0.00015	
	1,2,3,4,7,8,9-H _p CDF	0.05	0.15		N.D.			0	<u> </u>	0.00025	
	HpCDFs	0.03	0.11	(0.06)		_		_	
	OCDF	0.05	0.18	(0.07)	×0.0003	0	× 0.0003	0.000021	
	Total PCDFs	-	-	(0.12)		0		0.014	
	Total PCDDs+PCDFs	-	-		3.8			0.0035		0.049	
	3,3',4,4'-TeCB(#77)	0.03	0.10		2.4		×0.0001	0.00024	× 0.0001	0.00024	
	3,4,4',5-TeCB(#81)	0.03	0.11	(0.11)	×0.0003	0	× 0.0003	0.000033	
	3,3',4,4',5-PeCB(#126)	0.04	0.14		N.D.		×0.1	0	× 0.1	0.002	
	3,3',4,4',5,5'-HxCB(#169)	0.03	0.09		N.D.		× 0.03	0	× 0.03	0.00045	
С	Non-ortho PCBs	_	_		2.5			0.00024		0.0027	
0	2',3,4,4',5-PeCB(#123)	0.04	0.12	(0.10)	× 0.00003	0	× 0.00003	0.0000030	
П	2,3',4,4',5-PeCB(#118)	0.05	0.18		5.9		× 0.00003	0.000177	× 0.00003	0.000177	
Р	2,3,3',4,4'-PeCB(#105)	0.04	0.14		2.8		× 0.00003	0.000084	× 0.00003	0.000084	
С	2,3,4,4',5+3,3',4,5,5'-PeCB(#114+#1		0.12		0.16		×0.00003	0.0000048	× 0.00003	0.0000048	
В	2,3',4,4',5,5'-HxCB(#167)	0.05	0.17	(0.11)	× 0.00003	0	× 0.00003	0.0000033	
s	2,3,3',4,4',5-HxCB(#156)	0.05	0.16		0.31		× 0.00003	0.0000093	× 0.00003	0.0000093	
	2,3,3',4,4',5'-HxCB(#157)	0.04	0.14		N.D.		×0.00003	0	× 0.00003	0.0000006	
	2,3,3',4,4',5,5'-HpCB(#189)	0.05	0.15		N.D.		×0.00003	0	× 0.00003	0.00000075	
	Mono-ortho PCBs				9.4			0.00028		0.00028	
<u> </u>	Total Co-PCBs	-	-		12			0.00052		0.0030	
Total PCDDs+PCDFs+Co-PCBs - - 16 0.0040 0.052 1. 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり、計量対象外である。											

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量 * 1: 定量下限未満の実測濃度を0として算出する。

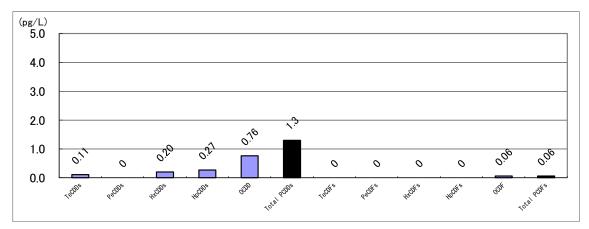
^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、表示上の数値を合計しても一致しない場合がある。

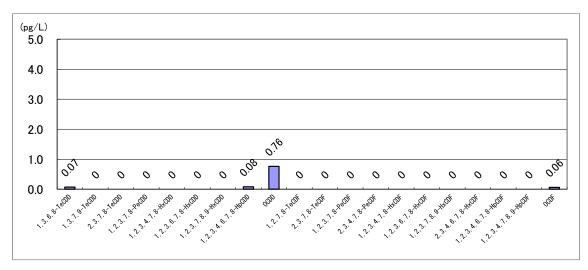
表 4-2-1-7 ダイオキシン類調査結果 (水質: St. S-2)

試料名 St.S-2					試料	媒体		水質			
	採取日 :	025年1月23日	25年1月23日			量 (L)	20.2				
\	,										
			定量下限值	実測濃度		WHO-TEF,2006 *1		WHO-TEF,2006 *2			
		pg/L	pg/L		pg/L		р	g-TEQ/L	pį	g-TEQ/L	
	1,3,6,8-TeCDD	0.03	0.09		0.10			_		_	
	1,3,7,9-TeCDD	0.03	0.09	(0.04)		_		_	
	2,3,7,8-TeCDD	0.03	0.09		N.D.		×1	0	×1	0.015	
	TeCDDs	0.03	0.09		0.17			_		_	
ダ	1,2,3,7,8-PeCDD	0.02	0.07		N.D.		×1	0	×1	0.01	
1	PeCDDs	0.02	0.07		N.D.			_		_	
オ	1,2,3,4,7,8-HxCDD	0.04	0.14		N.D.		× 0.1	0	× 0.1	0.002	
+	1,2,3,6,7,8-HxCDD	0.05	0.15		N.D.			0		0.0025	
シ	1,2,3,7,8,9-HxCDD	0.05	0.15		N.D.			0		0.0025	
ン	HxCDDs	0.04	0.14	(0.10)		_		_	
	1,2,3,4,6,7,8-HpCDD	0.05	0.18	(0.10)	× 0.01	0	× 0.01	0.0010	
	HpCDDs	0.05	0.18		0.29			_		_	
	OCDD	0.05	0.17		1.2		× 0.0003	0.00036	× 0.0003	0.00036	
	Total PCDDs	-	_		1.8			0.00036		0.033	
	1,2,7,8-TeCDF	0.03	0.09		N.D.			_		_	
	2,3,7,8-TeCDF	0.03	0.09		N.D.		× 0.1	0	× 0.1	0.0015	
	TeCDFs	0.03	0.09		0.12			_		_	
	1,2,3,7,8-PeCDF	0.03	0.09		N.D.		× 0.03	0	× 0.03	0.00045	
	2,3,4,7,8-PeCDF	0.03	0.09		N.D.		×0.3	0	× 0.3	0.0045	
ジ	PeCDFs	0.03	0.09		N.D.			_		_	
ベ	1,2,3,4,7,8-HxCDF	0.03	0.10		N.D.		× 0.1	0	× 0.1	0.0015	
ン	1,2,3,6,7,8-HxCDF	0.03	0.11		N.D.			0		0.0015	
ゾ	1,2,3,7,8,9-HxCDF	0.05	0.18		N.D.			0		0.0025	
フ	2,3,4,6,7,8-HxCDF	0.03	0.12		N.D.			0		0.0015	
ラ	HxCDFs	0.03	0.10		N.D.			_		_	
ン	1,2,3,4,6,7,8-H _P CDF	0.03	0.11	(0.04)	× 0.01	0	× 0.01	0.0004	
	1,2,3,4,7,8,9-H _P CDF	0.05	0.15		N.D.			0		0.00025	
	HpCDFs	0.03	0.11	(0.04)		_		_	
	oCDF	0.05	0.18		N.D.		× 0.0003	0	×0.0003	0.0000075	
	Total PCDFs	-	-		0.16			0		0.014	
	Total PCDDs+PCDFs	-	-		2.0			0.00036		0.047	
	3,3',4,4'-TeCB(#77)	0.03	0.10		2.9		× 0.0001	0.00029	× 0.0001	0.00029	
	3,4,4',5-TeCB(#81)	0.03	0.11		0.13		× 0.0003	0.000039	×0.0003	0.000039	
	3,3',4,4',5-PeCB(#126)	0.04	0.14		N.D.		× 0.1	0	× 0.1	0.002	
	3,3',4,4',5,5'-HxCB(#169)	0.03	0.09	ļ	N.D.		× 0.03	0	× 0.03	0.00045	
С	Non-ortho PCBs	_	_		3.0			0.00033		0.0028	
0	2',3,4,4',5-PeCB(#123)	0.04	0.12	ļ	0.16		×0.00003	0.0000048	× 0.00003	0.0000048	
	2,3',4,4',5-PeCB(#118)	0.06	0.19		8.8		×0.00003	0.000264	× 0.00003	0.000264	
Р	2,3,3',4,4'-PeCB(#105)	0.04	0.14	ļ	3.9		×0.00003	0.000117	× 0.00003	0.000117	
С	2,3,4,4 ', 5 +3,3',4,5,5'-PeCB(#114+#1	27 0.04	0.12		0.25		×0.00003	0.0000075	× 0.00003	0.0000075	
В	2,3',4,4',5,5'-HxCB(#167)	0.05	0.18	(0.17)	×0.00003	0	× 0.00003	0.0000051	
s	2,3,3',4,4',5-HxCB(#156)	0.05	0.16	ļ	0.33		×0.00003	0.0000099	× 0.00003	0.0000099	
	2,3,3',4,4',5'-H xCB(#157)	0.04	0.15	(0.09)	×0.00003	0	× 0.00003	0.0000027	
	2,3,3',4,4',5,5'-H pCB(#189)	0.05	0.16		N.D.		×0.00003	0	× 0.00003	0.00000075	
	Mono-ortho PCBs	_	-		14			0.00040		0.00041	
	Total Co-PCBs	-	-		17			0.00073		0.0032	
	Total PCDDs+PCDFs+Co-PCBs	_	-		19			0.0011		0.051	
1. 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり、計量対象外である。											

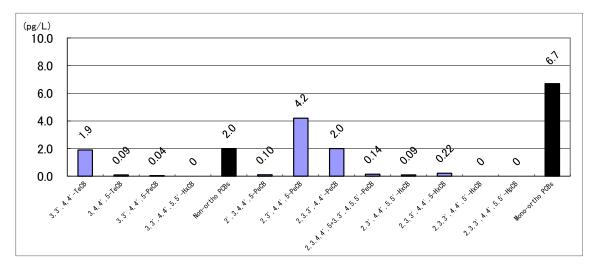
^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり、計量対象外である。


^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

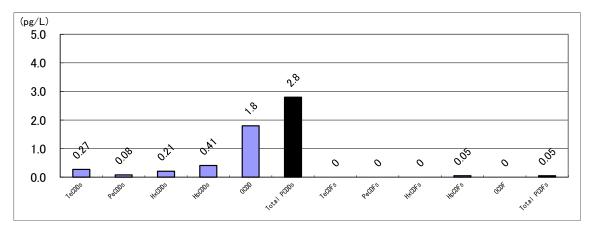
^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。


^{4.} 毒性当量*1:定量下限未満の実測濃度を0として算出する。

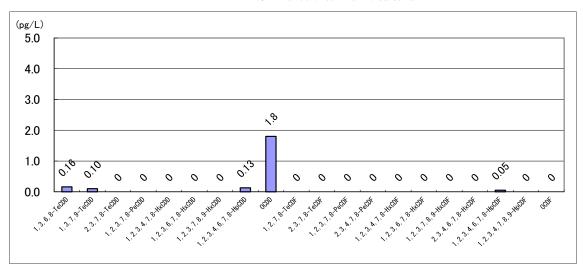
^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。


^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、表示上の数値を合計しても一致しない場合がある。

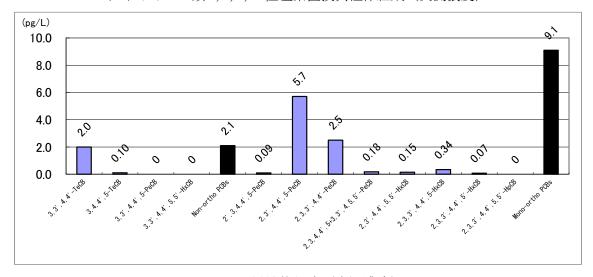
ダイオキシン類同族体組成 (実測濃度)



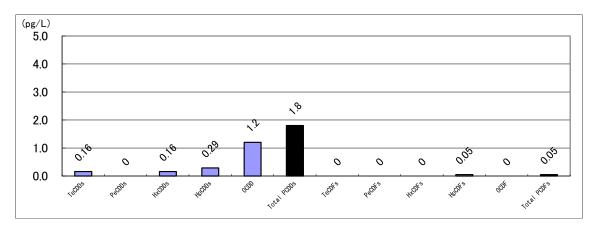
ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)



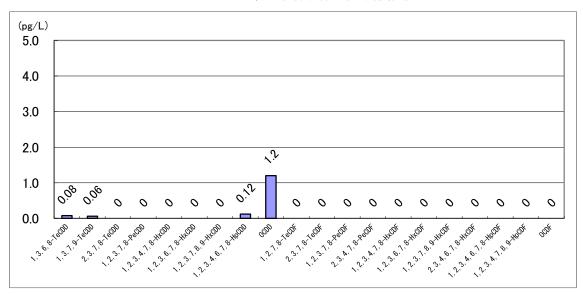
Co-PCBs 異性体組成 (実測濃度)


図4-2-1-1 同族体および異性体の組成(水質:St.1)

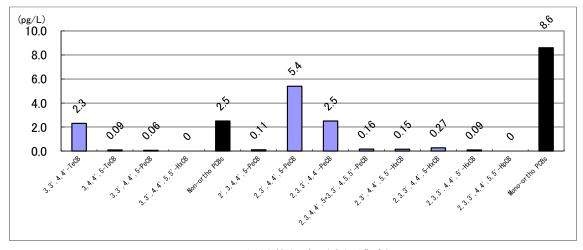
ダイオキシン類同族体組成 (実測濃度)



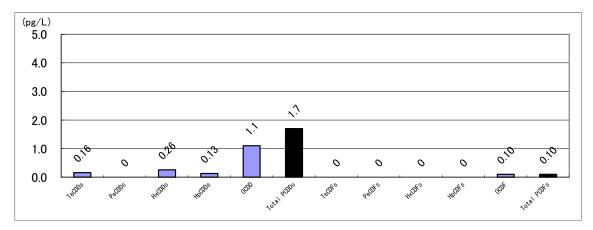
ダイオキシン類 2,3,7,8-位塩素置換異性体組成(実測濃度)



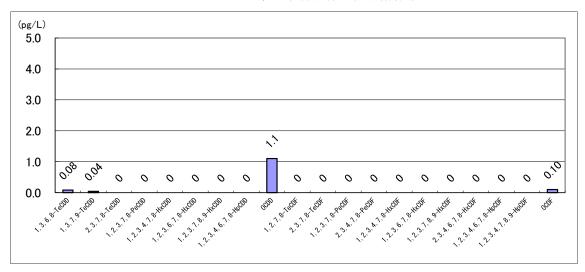
Co-PCBs 異性体組成 (実測濃度)


図4-2-1-2 同族体および異性体の組成(水質:St. 2)

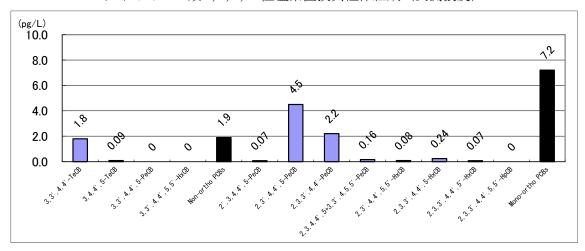
ダイオキシン類同族体組成 (実測濃度)



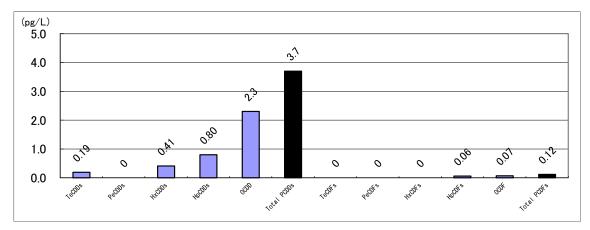
ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)



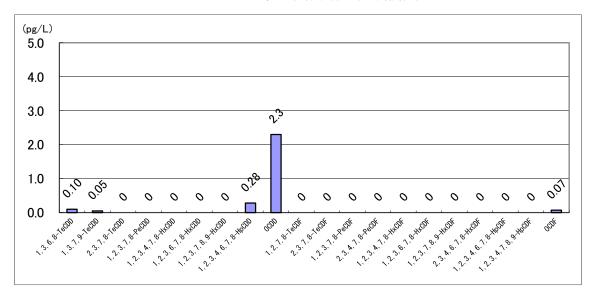
Co-PCBs 異性体組成 (実測濃度)


図4-2-1-3 同族体および異性体の組成(水質:St. 3)

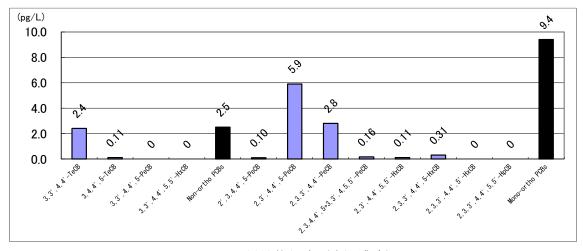
ダイオキシン類同族体組成 (実測濃度)



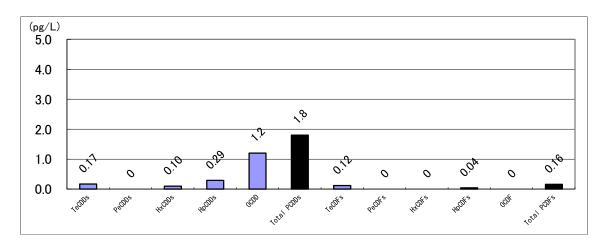
ダイオキシン類 2,3,7,8-位塩素置換異性体組成(実測濃度)



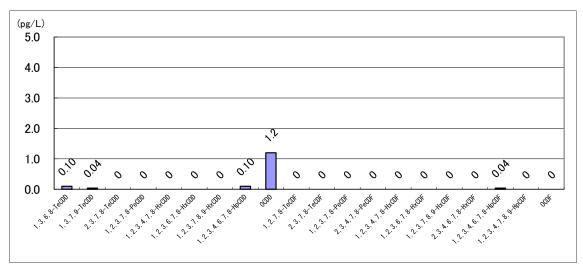
Co-PCBs 異性体組成 (実測濃度)


図4-2-1-4 同族体および異性体の組成(水質:St. 4)

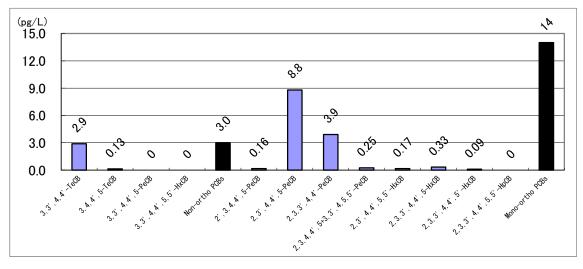
ダイオキシン類同族体組成 (実測濃度)



ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)



Co-PCBs 異性体組成 (実測濃度)


図4-2-1-5 同族体および異性体の組成(水質:St.S-1)

ダイオキシン類同族体組成 (実測濃度)

ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)

Co-PCBs 異性体組成 (実測濃度)

図4-2-1-6 同族体および異性体の組成(水質:St.S-2)

4-2-2 底質調査結果

分析結果概要を表 4-2-2-1~表 4-2-2-2、異性体および同族体別調査結果を表 4-2-2-3~表 4-2-2-10 に示す。また、同族体および異性体のパターンを図 4-2-2-1~図 4-2-2-4 に示す。

本調査の結果は、含有試験では $2.9\sim13$ pg-TEQ/g であり、各地点とも環境基準を下回っていた。溶出試験では $0.0017\sim0.015$ であり、各地点とも環境基準を下回っていた。

令和 5 年度「大阪府ダイオキシン類常時監視結果」(巻末参考資料参照)によると、大阪湾における底質の濃度は $1.1\sim16$ pg-TEQ/g であり、今回の結果はそれらの結果と比較するとほぼ同じ値であった。

表4-2-2-1 分析結果概要(底質)

試料名	試験項目	実測濃度	毒性当量
		(pg/g-dry)	(pg-TEQ/g)
	PCDDs+PCDFs	1200	3.0
St.1	Co-PCBs	400	0.22
	ダイオキシン類	-	3.2
	PCDDs+PCDFs	3900	11
St.2	Co-PCBs	1600	0.79
	ダイオキシン類	-	12
	PCDDs+PCDFs	850	2.7
St.3	Co-PCBs	380	0.22
	ダイオキシン類	-	2.9
	PCDDs+PCDFs	4300	12
St.4	Co-PCBs	1900	1.0
	ダイオキシン類	-	13

この表は、ダイオキシン類測定結果から一部のデータを抜粋した参考資料である。

毒性当量: 2,3,7,8-T₄CDD 毒性当量を示す。

毒性等価係数は以下の係数を適用した。

PCDDs, PCDFs: WHO/IPCS (2006)

Co-PCBs: WHO/IPCS(2006)

毒性当量は検出下限未満のものは、試料における検出下限の1/2の値を用いて算出したものである。

表4-4-2-2 分析結果概要(底質・溶出試験)

試料名	試験項目	実測濃度	毒性当量
		(pg/L)	(pg-TEQ/L)
	PCDDs+PCDFs	25	0.014
St.1	Co-PCBs	22	0.00091
	ダイオキシン類	47	0.014
	PCDDs+PCDFs	10	0.00087
St.2	Co-PCBs	21	0.00088
	ダイオキシン類	31	0.0017
	PCDDs+PCDFs	22	0.014
St.3	Co-PCBs	24	0.00095
	ダイオキシン類	46	0.015
	PCDDs+PCDFs	25	0.0056
St.4	Co-PCBs	16	0.00078
	ダイオキシン類	41	0.0064

この表は、ダイオキシン類測定結果から一部のデータを抜粋した参考資料である。

毒性当量:2,3,7,8-T_eCDD 毒性当量を示す。

毒性等価係数は以下の係数を適用した。

PCDDs, PCDFs: WHO/IPCS (2006)

Co-PCBs: WHO/IPCS(2006)

毒性当量は定量下限未満の実測濃度を0として算出した。

表 4-2-2-3 ダイオキシン類調査結果(底質・含有試験: St. 1)

	試料名 採取日 202	St.1 5年1月23日		武料媒体 試料量(g-	dry)		底質	
	No.	1 . 7 . 7		試料量 (g-dry)		ry) 5.2		
						- 基州	生当量	
			定量下限値	実測濃度	WHO-	开口 TEF,2006 *1		ΓΕF,2006 *2
		pg/g-dry	pg/g-dry	pg/g-dry	pg-	TEQ/g-dry	pg-T	ΓEQ/g-dry
	1,3,6,8-TeCDD	0.07	0.22	14		_		_
ŀ	1,3,7,9-TeCDD	0.07	0.22	6.7		_		_
	2,3,7,8-TeCDD	0.07	0.22	(0.10)	×1	0	×1	0.10
l	TeCDDs	0.07	0.22	25		_		_
ダ	1,2,3,7,8-PeCDD	0.06	0.18	0.56	×1	0.56	×1	0.56
1	PeCDDs	0.06	0.18	19		_		_
オ	1,2,3,4,7,8-HxCDD	0.1	0.3	1.2	× 0.1	0.12	× 0.1	0.12
+	1,2,3,6,7,8-HxCDD	0.1	0.4	2.6		0.26		0.26
シ	1,2,3,7,8,9-HxCDD	0.08	0.28	2.6		0.26		0.26
ン	HxCDDs	0.08	0.28	73		_		_
	1,2,3,4,6,7,8-H _P CDD	0.1	0.3	51	× 0.01	0.51	× 0.01	0.51
[H₀CDDs	0.1	0.3	180		_		
	OCDD	0.07	0.25	810	× 0.0003	0.243	× 0.0003	0.243
	Total PCDDs			1100		2.0		2.1
	1,2,7,8-TeCDF	0.1	0.3	0.8		_		_
	2,3,7,8-TeCDF	0.1	0.3	0.8	× 0.1	0.08	× 0.1	0.08
	TeCDFs	0.1	0.3	16		_		_
	1,2,3,7,8-PeCDF	0.1	0.4	0.8	× 0.03	0.024	× 0.03	0.024
	2,3,4,7,8-PeCDF	0.1	0.3	0.8	×0.3	0.24	× 0.3	0.24
ジ	P eCDFs	0.1	0.3	16		_		_
ベ	1,2,3,4,7,8-HxCDF	0.08	0.27	2.0	× 0.1	0.20	× 0.1	0.20
ン	1,2,3,6,7,8-HxCDF	0.1	0.4	1.3		0.13		0.13
ゾ	1,2,3,7,8,9-HxCDF	0.05	0.15	0.16		0.016		0.016
フ	2,3,4,6,7,8-HxCDF	0.1	0.3	1.3		0.13		0.13
ラ	HxCDFs	0.05	0.15	16		_		_
ン	1,2,3,4,6,7,8-H _P CDF	0.07	0.22	9.1	× 0.01	0.091	× 0.01	0.091
	1,2,3,4,7,8,9-HpCDF	0.1	0.4	1.0		0.010		0.010
[HpCDFs	0.07	0.22	16		_		_
	o CDF	0.1	0.3	11	× 0.0003	0.0033	× 0.0003	0.0033
	Total PCDFs	-	-	75		0.92		0.92
	Total PCDDs+PCDFs	-	-	1200		2.9		3.0
	3,3',4,4'-TeCB(#77)	0.09	0.31	60	×0.0001	0.0060	× 0.0001	0.0060
	3,4,4',5-TeCB(#81)	0.08	0.26	1.7	×0.0003	0.00051	×0.0003	0.00051
	3,3',4,4',5-PeCB(#126)	0.08	0.27	1.9	×0.1	0.19	× 0.1	0.19
ļ	3,3',4,4',5,5'-HxCB(#169)	0.09	0.30	0.39	× 0.03	0.0117	× 0.03	0.0117
	Non-ortho PCBs	_	_	64		0.21		0.21
	2',3,4,4',5-PeCB(#123)	0.08	0.27	3.7	×0.00003	0.000111	× 0.00003	0.000111
	2,3',4,4',5-PeCB(#118)	0.1	0.3	230	×0.00003	0.0069	× 0.00003	0.0069
	2,3,3',4,4'-PeCB(#105)	0.1	0.3	61	×0.00003	0.00183	× 0.00003	0.00183
	2,3,4,4',5+3,3',4,5,5'-PeCB(#114+#127	0.1	0.3	2.7	×0.00003	0.000081	× 0.00003	0.000081
	2,3',4,4',5,5'-HxCB(#167)	0.1	0.3	11	×0.00003	0.00033	× 0.00003	0.00033
	2,3,3',4,4',5-HxCB(#156)	0.08	0.27	22	×0.00003	0.00066	× 0.00003	0.00066
	2,3,3',4,4',5'-HxCB(#157)	0.1	0.4	5.5	×0.00003	0.000165	× 0.00003	0.000165
	2,3,3',4,4',5,5'-HpCB(#189)	0.08	0.27	3.0	×0.00003	0.000090	× 0.00003	0.000090
ļ	Mono-ortho PCBs	-	-	340		0.010		0.010
	Total Co-PCBs	-	-	400		0.22		0.22
	Total PCDDs+PCDFs+Co-PCBs	-	-	1600		3.1		3.2

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量 * 1: 定量下限未満の実測濃度を0として算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、表示上の数値を合計しても一致しない場合がある。

表 4-2-2-4 ダイオキシン類調査結果 (底質・含有試験: St. 2)

	試料名	St.2		試料媒体	<u>k</u>		底質	
	採取日 20	25年1月23日		試料量(g-dry)		5.1	
_	,					毒性	E当量	
		検出下限値	定量下限値	実測濃度	WHO-	TEF,2006 *1		ΓΕF,2006 *2
		pg/g-dry	pg/g-dry	pg/g-dry	pg-	TEQ/g-dry	pg-7	ΓEQ/g-dry
	1,3,6,8-TeCDD	0.07	0.22	64		_		_
	1,3,7,9-TeCDD	0.07	0.22	30		_		_
	2,3,7,8-TeCDD	0.07	0.22	0.56	×1	0.56	×1	0.56
	TeCDDs	0.07	0.22	110		_		_
ダ	1,2,3,7,8-PeCDD	0.06	0.19	2.2	×1	2.2	×1	2.2
1	PeCDDs	0.06	0.19	61		_		_
才	1,2,3,4,7,8-HxCDD	0.1	0.3	3.7	× 0.1	0.37	× 0.1	0.37
キ	1,2,3,6,7,8-HxCDD	0.1	0.4	8.3		0.83		0.83
シ	1,2,3,7,8,9-HxCDD	0.09	0.29	8.4		0.84		0.84
ン	HxCDDs	0.09	0.29	190		_		_
	1,2,3,4,6,7,8-H _P CDD	0.1	0.3	170	× 0.01	1.7	× 0.01	1.7
	HpCDDs	0.1	0.3	550		_		_
	ocdd	0.08	0.25	2700	× 0.0003	0.81	×0.0003	0.81
	Total PCDDs	_	_	3600		7.3		7.3
	1,2,7,8-TeCDF	0.1	0.4	2.5		_		_
	2,3,7,8-TeCDF	0.1	0.4	2.6	× 0.1	0.26	× 0.1	0.26
	TeCDFs	0.1	0.4	54		_	^	_
	1,2,3,7,8-PeCDF	0.1	0.4	3.1	× 0.03	0.093	× 0.03	0.093
	2,3,4,7,8-PeCDF	0.1	0.4	3.0	× 0.3	0.90	× 0.3	0.90
ジ	PeCDFs	0.1	0.4	61		_		_
ベ	1,2,3,4,7,8-HxCDF	0.08	0.28	6.7	× 0.1	0.67	× 0.1	0.67
ン	1,2,3,6,7,8-HxCDF	0.1	0.4	5.6		0.56		0.56
ゾ	1,2,3,7,8,9-HxCDF	0.05	0.16	0.39		0.039		0.039
フ	2,3,4,6,7,8-HxCDF	0.1	0.3	5.7		0.57		0.57
ラ	HxCDFs	0.05	0.16	58		_	***************************************	_
ン	1,2,3,4,6,7,8-H _p CDF	0.07	0.23	33	× 0.01	0.33	× 0.01	0.33
	1,2,3,4,7,8,9-H _p CDF	0.1	0.4	3.6		0.036		0.036
	HpCDFs	0.07	0.23	63		_		_
	ocdf	0.1	0.3	43	× 0.0003	0.0129	× 0.0003	0.0129
	Total PCDFs	-	_	280		3.5		3.5
	Total PCDDs+PCDFs	-	-	3900		11		11
	3,3',4,4'-TeCB(#77)	0.09	0.31	210	× 0.0001	0.021	× 0.0001	0.021
	3,4,4',5 -TeCB(#81)	0.08	0.27	5.0	× 0.0003	0.00150	× 0.0003	0.00150
	3,3',4,4',5-PeCB(#126)	0.08	0.28	6.9	× 0.1	0.69	× 0.1	0.69
	3,3',4,4',5,5'-HxCB(#169)	0.09	0.30	1.4	× 0.03	0.042	× 0.03	0.042
С	Non-ortho PCBs	-	-	220		0.75		0.75
0	2',3,4,4',5-PeCB(#123)	0.08	0.27	13	×0.00003	0.00039	×0.00003	0.00039
	2 ,3', 4 , 4 ', 5 -PeCB(#118)	0.1	0.3	880	× 0.00003	0.0264	× 0.00003	0.0264
Р	2 , 3 , 3 ′, 4 , 4 ′-PeCB(#105)	0.1	0.3	280	× 0.00003	0.0084	× 0.00003	0.0084
С	2,3,4,4',5 +3,3',4,5,5'-PeCB(#114+#12	0.1	0.3	11	× 0.00003	0.00033	× 0.00003	0.00033
В	2 ,3', 4 , 4 ', 5 ,5'-HxCB(#167)	0.1	0.4	38	× 0.00003	0.00114	× 0.00003	0.00114
s	2,3,3',4,4',5 -HxCB(#156)	0.08	0.28	84	×0.00003	0.00252	× 0.00003	0.00252
	2 , 3 , 3 ', 4 , 4 ', 5 '-HxCB(#157)	0.1	0.4	23	× 0.00003	0.00069	× 0.00003	0.00069
	2,3,3',4,4',5,5'- HpCB(#189)	0.08	0.28	8.3	×0.00003	0.000249	×0.00003	0.000249
	Mono-ortho PCBs	-	-	1300		0.040		0.040
	Total Co-PCBs	-	_	1600		0.79		0.79
	Total PCDDs+PCDFs+Co-PCBs	_	_	5400	1	12	1	12

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量*1:定量下限未満の実測濃度を0として算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、表示上の数値を合計しても一致しない場合がある。

表 4-2-2-5 ダイオキシン類調査結果 (底質・含有試験: St. 3)

試料名		St.3		試料媒体			底質	
採取日	202	5年1月23日		試料量 (g-	dry)	5.2		
	,					毒性	生当量	
		検出下限値	定量下限值	実測濃度	WHO-	TEF,2006 *1	WHO-1	ΓEF,2006 *2
1		pg/g-dry	pg/g-dry	pg/g-dry	pg-	TEQ/g-dry	pg-7	EQ/g-dry
1,3,6,8-TeCDD		0.07	0.22	18		_		_
1,3,7,9-TeCDD		0.07	0.22	7.8		_		_
2,3,7,8-TeCDD		0.07	0.22	(0.13)	×1	0	×1	0.13
TeCDDs		0.07	0.22	30		_		
ダ 1,2,3,7,8-PeCDD		0.06	0.18	0.55	×1	0.55	×1	0.55
イ PeCDDs		0.06	0.18	27	***************************************	_		_
才 1,2,3,4,7,8-HxCDD		0.1	0.3	1.0	× 0.1	0.10	× 0.1	0.10
† 1,2,3,6,7,8-HxCDD		0.1	0.4	2.3		0.23		0.23
シ 1,2,3,7,8,9-HxCDD		0.08	0.28	2.0		0.20		0.20
ソ HxCDDs		0.08	0.28	63		_		_
1,2,3,4,6,7,8-H _p CDD		0.1	0.3	37	× 0.01	0.37	× 0.01	0.37
HpCDDs		0.1	0.3	120		_		<u> </u>
OCDD		0.07	0.25	540	×0.0003	0.162	× 0.0003	0.162
Total PCDDs		_	_	780		1.6		1.7
1,2,7,8-TeCDF		0.1	0.3	0.6		_		_
2,3,7,8-TeCDF		0.1	0.3	0.7	× 0.1	0.07	× 0.1	0.07
TeCDFs		0.1	0.3	14				_
1,2,3,7,8-PeCDF		0.1	0.4	0.8	× 0.03	0.024	× 0.03	0.024
2,3,4,7,8-PeCDF		0.1	0.4	1.1	×0.3	0.33	× 0.3	0.33
PeCDFs		0.1	0.4	16		-		_
1,2,3,4,7,8-HxCDF		0.08	0.27	1.7	× 0.1	0.17	× 0.1	0.17
1,2,3,6,7,8-HxCDF		0.1	0.4	1.2		0.12		0.12
) 1,2,3,7,8,9-HxCDF		0.05	0.15	0.21		0.021		0.021
2,3,4,6,7,8-HxCDF		0.1	0.3	1.4		0.14		0.14
H xCDFs		0.05	0.15	13				
ン 1,2,3,4,6,7,8-HpCDF		0.07	0.23	7.4	× 0.01	0.074	× 0.01	0.074
1,2,3,4,7,8,9-H _p CDF		0.1	0.4	1.1		0.011		0.011
HpCDFs		0.07	0.23	14				
OCDF		0.1	0.3	10	× 0.0003	0.0030	× 0.0003	0.0030
Total PCDFs		-	-	67		0.96		0.96
Total PCDDs+PCD)Fs	-	-	850	× 0.0001	2.6	× 0.0001	2.7
3,3',4,4'-TeCB(#77)		0.09	0.31	59		0.0059	× 0.0001	0.0059
3,4,4',5-TeCB(#81) 3,3',4,4',5-PeCB(#12	(C)	0.08	0.26	1.5	×0.0003	0.00045	× 0.1	0.00045
***************************************		0.08	0.27	1.9	× 0.03	0.19	× 0.03	0.19
3,3',4,4',5,5'-HxCB(#	103)	0.09	0.30	0.47		0.0141		0.0141
Non-ortho PCBs 2',3,4,4',5-PeCB(#12	2)			63	× 0.00003	0.21	×0.00003	0.21
2,3,4,4,5-PeCB(#12 2,3,4,4,5-PeCB(#11	····	0.08	0.27	3.2	× 0.00003	0.000096	× 0.00003	0.000096
2,3,4,4,5-PeCB(#11 2,3,3',4,4'-PeCB(#10		0.1	0.3	210	× 0.00003	0.0063	× 0.00003	0.0063
2,3,4,4',5+3,3',4,5,5'-	····	0.1 0.1	0.3	61 2.8	× 0.00003	0.00183	× 0.00003	0.00183
3 2,3',4,4',5,5'-HxCB(#	`	0.1	0.3	9.8	× 0.00003	0.000084	× 0.00003	0.000084
2,3,4,4,5,5 -HxCB(#1		0.08	0.3	23	× 0.00003	0.000294	× 0.00003	0.000294
2,3,3',4,4',5'-HxCB(#		0.08	0.4	6.0	× 0.00003	0.000180	× 0.00003	0.000180
2,3,3',4,4',5,5'-HpCB(#		0.08	0.4	3.6	× 0.00003	0.000180	× 0.00003	0.000180
Mono-ortho PCBs	(11 103)	-	U.Z I	320		0.000108		0.000108
Total Co-PCBs				380		0.0096		0.0096
	En+Co-BCP a			1200		2.8		2.9
Total PCDDs+PCDF				アングライス アングライス アングラ アングラ アングラ アング アングラ アング アンファイ アング アンファイ アングラ アング アング アング アングラ アングラ アングラ アングラ アン	<u> </u>	۷.0	1	2.3

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量*1:定量下限未満の実測濃度を0として算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、表示上の数値を合計しても一致しない場合がある。

表 4-2-2-6 ダイオキシン類調査結果 (底質・含有試験: St. 4)

	試料名	St.4		試料媒体	本		底質	
	採取日 20	025年1月23日		試料量(g-dry)		4.9	
_	,					· 毒(生当量	
		検出下限値	定量下限値	実測濃度	WHO-	TEF,2006 *1		ΓΕF,2006 *2
		pg/g-dry	pg/g-dry	pg/g-dry	pg-	TEQ/g-dry	pg-1	ΓEQ/g-dry
	1,3,6,8-TeCDD	0.07	0.23	86		_		_
	1,3,7,9-TeCDD	0.07	0.23	38		_		_
	2,3,7,8-TeCDD	0.07	0.23	0.39	×1	0.39	×1	0.39
	TeCDDs	0.07	0.23	140		_		_
ダ	1,2,3,7,8-PeCDD	0.06	0.19	2.0	×1	2.0	×1	2.0
イ	PeCDDs	0.06	0.19	64		_		_
ナ	1,2,3,4,7,8-HxCDD	0.1	0.4	4.0	× 0.1	0.40	× 0.1	0.40
+	1,2,3,6,7,8-HxCDD	0.1	0.4	8.4		0.84		0.84
シ	1,2,3,7,8,9-HxCDD	0.09	0.29	8.8		0.88		0.88
ン	HxCDDs	0.09	0.29	180		_		_
	1,2,3,4,6,7,8-HpCDD	0.1	0.3	190	× 0.01	1.9	× 0.01	1.9
	HpCDDs	0.1	0.3	570		<u> </u>		_
	oCDD	0.08	0.26	3000	× 0.0003	0.9	× 0.0003	0.9
	Total PCDDs	_	_	4000		7.3		7.3
	1,2,7,8-TeCDF	0.1	0.4	2.9		_		_
	2,3,7,8-TeCDF	0.1	0.4	3.7	× 0.1	0.37	× 0.1	0.37
	TeCDFs	0.1	0.4	66		_		_
	1,2,3,7,8-PeCDF	0.1	0.4	3.6	× 0.03	0.108	× 0.03	0.108
	2,3,4,7,8-PeCDF	0.1	0.4	4.5	× 0.3	1.35	× 0.3	1.35
ジ	PeCDFs	0.1	0.4	73		_		_
べ	1,2,3,4,7,8-HxCDF	0.09	0.29	8.0	× 0.1	0.80	× 0.1	0.80
ン	1,2,3,6,7,8-HxCDF	0.1	0.4	6.5		0.65		0.65
ゾ	1,2,3,7,8,9-HxCDF	0.05	0.16	0.66		0.066		0.066
フ	2,3,4,6,7,8-HxCDF	0.1	0.4	7.5		0.75		0.75
ラ	HxCDFs	0.05	0.16	72		_		_
ン	1,2,3,4,6,7,8-H _p CDF	0.07	0.24	42	× 0.01	0.42	× 0.01	0.42
	1,2,3,4,7,8,9-H _p CDF	0.1	0.4	5.4		0.054		0.054
	HpCDFs	0.07	0.24	80		_		_
	OCDF	0.1	0.3	53	× 0.0003	0.0159	× 0.0003	0.0159
	Total PCDFs	-	-	340		4.6		4.6
	Total PCDDs+PCDFs	-	-	4300		12		12
	3,3',4,4'-TeCB(#77)	0.1	0.3	190	× 0.0001	0.019	× 0.0001	0.019
	3,4,4',5-T eCB(#81)	0.08	0.28	5.0	× 0.0003	0.00150	× 0.0003	0.00150
	3,3',4,4',5-PeCB(#126)	0.09	0.29	9.1	×0.1	0.91	× 0.1	0.91
	3,3',4,4',5,5'-HxCB(#169)	0.09	0.31	1.8	×0.03	0.054	× 0.03	0.054
С	Non-ortho PCBs	-	-	200		0.98		0.98
0	2',3,4,4',5-PeCB(#123)	0.08	0.28	18	×0.00003	0.00054	× 0.00003	0.00054
	2,3',4,4',5-PeCB(#118)	0.1	0.3	1100	×0.00003	0.033	× 0.00003	0.033
Р	2,3,3',4,4'-PeCB(#105)	0.1	0.3	350	×0.00003	0.0105	× 0.00003	0.0105
С	2,3,4,4',5+3,3',4,5,5'-PeCB(#114+#12	7 0.1	0.3	14	×0.00003	0.00042	× 0.00003	0.00042
В	2,3',4,4',5,5'-HxCB(#167)	0.1	0.4	50	×0.00003	0.00150	× 0.00003	0.00150
s	2,3,3',4,4',5 -HxCB(#156)	0.09	0.29	120	×0.00003	0.0036	× 0.00003	0.0036
	2,3,3',4,4',5'-H xCB(#157)	0.1	0.4	30	×0.00003	0.00090	× 0.00003	0.00090
	2,3,3',4,4',5,5'-H pCB(#189)	0.08	0.28	12	×0.00003	0.00036	× 0.00003	0.00036
	Mono-ortho PCBs	-	_	1700		0.051		0.051
	Total Co-PCBs	_	-	1900		1.0		1.0
	Total PCDDs+PCDFs+Co-PCBs	-	-	6200		13		13

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量 * 1: 定量下限未満の実測濃度を0として算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、表示上の数値を合計しても一致しない場合がある。

表 4-4-2-7 ダイオキシン類調査結果(底質・溶出試験: St. 1)

	試料名	St.4		試料媒体		溶出液
	採取日	2025年1月23日		試料量(L	_)	5.4
_	,					· 毒性当量
		検出下限値	定量下限値	実測濃度		WHO-TEF,2006
		pg/L	pg/L	pg/L		pg-TEQ/L
	1,3,6,8-TeCDD	0.05	0.16	0.76		_
	1,3,7,9-TeCDD	0.05	0.16	0.70		_
	2,3,7,8-TeCDD	0.05	0.16	N.D.	×1	0
	TeCDDs	0.05	0.16	4.5		_
ダ	1,2,3,7,8-PeCDD	0.04	0.13	N.D.	×1	0
1	PeCDDs	0.04	0.13	1.7		_
オ	1,2,3,4,7,8-HxCDD	0.08	0.27	N.D.	× 0.1	0
+	1,2,3,6,7,8-HxCDD	0.09	0.29	N.D.		0
シ	1,2,3,7,8,9-HxCDD	0.08	0.28	N.D.		0
ン	HxCDDs	0.08	0.27	1.2		_
	1,2,3,4,6,7,8-HpCDD	0.1	0.3	0.4	× 0.01	0.004
	HpCDDs	0.1	0.3	1.7		_
	OCDD	0.09	0.31	5.4	×0.0003	0.00162
	Total PCDDs	_	_	15		0.0056
	1.2.7.8-TeCDF	0.05	0.17	0.19		_
	2.3.7.8-TeCDF	0.05	0.17	(0.10)	× 0.1	0
	TeCDFs	0.05	0.17	6.8		_
	1.2.3.7.8-PeCDF	0.05	0.17	(0.06)	× 0.03	0
	2.3.4.7.8-PeCDF	0.05	0.17	N.D.	× 0.3	0
ジ	PeCDFs	0.05	0.17	2.7		_
	1,2,3,4,7,8-HxCDF	0.06	0.19	N.D.	× 0.1	0
	1,2,3,6,7,8-HxCDF	0.06	0.21	(0.09)		0
ゾ	1,2,3,7,8,9-HxCDF	0.1	0.3	N.D.		0
-	2.3.4.6.7.8-HxCDF	0.07	0.22	(0.08)		0
ラ	HxCDFs	0.06	0.19	0.66		_
-	1,2,3,4,6,7,8-HpCDF	0.06	0.21	(0.11)	× 0.01	0
-	1,2,3,4,7,8,9-HpCDF	0.09	0.29	N.D.		0
	HpCDFs	0.06	0.21	0.39		_
	OCDF	0.1	0.3	(0.2)	× 0.0003	0
	Total PCDFs	-	-	11		0
	Total PCDDs+PCDFs	_	_	25		0.0056
	3,3',4,4'-TeCB(#77)	0.06	0.18	3.9	×0.0001	0.00039
	3,4,4',5-TeCB(#81)	0.06	0.21	0.22	×0.0003	0.000066
	3.3'.4.4'.5-PeCB(#126)	0.08	0.26	(0.22)	× 0.1	0
	3,3',4,4',5,5'-HxCB(#169)	0.05	0.16	N.D.	× 0.03	0
С	Non-ortho PCBs	_	-	4.3		0.00046
0	2',3,4,4',5-PeCB(#123)	0.07	0.22	(0.13)	×0.00003	0
Ī	2,3',4,4',5-PeCB(#118)	0.1	0.3	6.0	×0.00003	0.000180
P	2,3,3',4,4'-PeCB(#105)	0.08	0.27	3.7	×0.00003	0.000111
C	2.3,4.4′,5+3,3′,4,5,5′–PeCB(#114+#127)	0.07	0.22	0.65	×0.00003	0.0000195
	2,3',4,4',5,5'-HxCB(#167)	0.1	0.3	(0.2)	×0.00003	0
	2,3,3',4,4',5-HxCB(#156)	0.09	0.30	0.43	×0.00003	0.0000129
_	2,3,3',4,4',5'-HxCB(#157)	0.08	0.27	(0.13)	× 0.00003	0
	2,3,3',4,4',5,5'-HpCB(#189)	0.09	0.29	N.D.	×0.00003	0
	Mono-ortho PCBs	-	-	11		0.00032
	Total Co-PCBs	_	_	16		0.00078
	Total PCDDs+PCDFs+Co-PCBs	+		41	+	0.0064

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり計量の対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量:定量下限未満の実測濃度をOとして算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、表示上の数値を合計しても一致しない場合がある。

表 4-4-2-8 ダイオキシン類調査結果 (底質・溶出試験: St. 2)

	試料名	St.2		試料媒体		溶出液
	採取日	2025年1月23日		試料量(L)		5.4
_	,					毒性当量
		検出下限値	定量下限値	実測濃度		WHO-TEF,2006
		pg/L	pg/L	pg/L		pg-TEQ/L
	1,3,6,8-TeCDD	0.05	0.16	0.33		_
	1,3,7,9-TeCDD	0.05	0.16	0.18		_
	2,3,7,8-TeCDD	0.05	0.16	N.D.	× 1	0
	TeCDDs	0.05	0.16	1.2		_
ダ	1,2,3,7,8-PeCDD	0.04	0.13	N.D.	×1	0
1	PeCDDs	0.04	0.13	0.72		_
ォ	1,2,3,4,7,8-HxCDD	0.08	0.27	N.D.	× 0.1	0
+	1,2,3,6,7,8-HxCDD	0.09	0.29	N.D.		0
シ	1,2,3,7,8,9-HxCDD	0.08	0.28	N.D.		0
ン	HxCDDs	0.08	0.27	1.4		_
	1,2,3,4,6,7,8-HpCDD	0.1	0.3	(0.2)	× 0.01	0
	HpCDDs	0.1	0.3	1.3		_
	OCDD	0.09	0.31	2.9	× 0.0003	0.00087
	Total PCDDs	_	1	7.4		0.00087
	1,2,7,8-TeCDF	0.05	0.17	N.D.		_
	2,3,7,8-TeCDF	0.05	0.17	N.D.	× 0.1	0
	TeCDFs	0.05	0.17	1.4		_
	1,2,3,7,8-PeCDF	0.05	0.16	N.D.	× 0.03	0
	2.3.4.7.8-PeCDF	0.05	0.17	N.D.	× 0.3	0
ジ	PeCDFs	0.05	0.16	0.30		_
	1,2,3,4,7,8-HxCDF	0.06	0.18	N.D.	× 0.1	0
	1,2,3,6,7,8-HxCDF	0.06	0.21	N.D.		0
	1,2,3,7,8,9-HxCDF	0.1	0.3	N.D.		0
	2,3,4,6,7,8-HxCDF	0.07	0.22	N.D.		0
	HxCDFs	0.06	0.18	0.59		_
-	1,2,3,4,6,7,8-HpCDF	0.06	0.21	N.D.	× 0.01	0
_	1,2,3,4,7,8,9-HpCDF	0.09	0.29	N.D.		0
	HpCDFs	0.06	0.21	0.28		_
	OCDF	0.1	0.3	(0.1)	× 0.0003	0
	Total PCDFs	_	_	2.7		0
	Total PCDDs+PCDFs	_	_	10		0.00087
	3,3',4,4'-TeCB(#77)	0.06	0.18	3.7	× 0.0001	0.00037
	3,4,4',5-TeCB(#81)	0.06	0.21	(0.18)	× 0.0003	0
	3,3',4,4',5-PeCB(#126)	0.08	0.26	N.D.	× 0.1	0
	3,3',4,4',5,5'-HxCB(#169)	0.05	0.16	N.D.	× 0.03	0
С	Non-ortho PCBs	_	_	3.8	***************************************	0.00037
0	2',3,4,4',5-PeCB(#123)	0.07	0.22	0.24	× 0.00003	0.0000072
1	2,3',4,4',5-PeCB(#118)	0.1	0.3	11	× 0.00003	0.00033
P	2,3,3',4,4'-PeCB(#105)	0.08	0.27	4.9	× 0.00003	0.000147
С	2,3,4,4',5+3,3',4,5,5'-PeCB(#114+#127)	0.07	0.22	0.39	× 0.00003	0.0000117
В	2,3',4,4',5,5'-HxCB(#167)	0.1	0.3	(0.2)	× 0.00003	0
s	2,3,3',4,4',5-HxCB(#156)	0.09	0.30	0.38	× 0.00003	0.0000114
	2,3,3',4,4',5'-HxCB(#157)	0.08	0.27	(0.11)	× 0.00003	0
	2,3,3',4,4',5,5'-HpCB(#189)	0.09	0.29	N.D.	× 0.00003	0
	Mono-ortho PCBs	-	_	17		0.00051
	Total Co-PCBs	_	_	21		0.00088
	Total PCDDs+PCDFs+Co-PCBs	_	_	31		0.0017

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量:定量下限未満の実測濃度をOとして算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、 表示上の数値を合計しても一致しない場合がある。

表 4-4-2-9 ダイオキシン類調査結果 (底質・溶出試験: St. 3)

	試料名	St.3		試料媒体		溶出液
	採取日	2025年1月23日		試料量(L)		5.4
/				******		, 毒性当量
		検出下限値	定量下限値	実測濃度		WHO-TEF,2006
		pg/L	pg/L	pg/L		pg-TEQ/L
	1,3,6,8-TeCDD	0.05	0.16	0.32		_
	1,3,7,9-TeCDD	0.05	0.16	(0.11)		_
	2,3,7,8-TeCDD	0.05	0.16	N.D.	×1	0
	TeCDDs	0.05	0.16	0.87		_
ダ	1,2,3,7,8-PeCDD	0.04	0.13	N.D.	×1	0
イ	PeCDDs	0.04	0.13	2.0		_
才	1,2,3,4,7,8-HxCDD	0.08	0.27	N.D.	× 0.1	0
+	1,2,3,6,7,8-HxCDD	0.09	0.29	(0.10)		0
シ	1,2,3,7,8,9-HxCDD	0.08	0.28	(0.11)		0
ン	HxCDDs	0.08	0.27	4.8		_
	1,2,3,4,6,7,8-HpCDD	0.1	0.3	0.9	× 0.01	0.009
	HpCDDs	0.1	0.3	3.9		_
	OCDD	0.09	0.31	5.0	× 0.0003	0.00150
	Total PCDDs	_	_	17		0.011
	1,2,7,8-TeCDF	0.05	0.17	N.D.		_
	2,3,7,8-TeCDF	0.05	0.17	N.D.	× 0.1	0
	TeCDFs	0.05	0.17	1.0		_
	1,2,3,7,8-PeCDF	0.05	0.17	N.D.	× 0.03	0
	2,3,4,7,8-PeCDF	0.05	0.17	N.D.	× 0.3	0
ジ	PeCDFs	0.05	0.17	0.40		_
ベ	1,2,3,4,7,8-HxCDF	0.06	0.19	(0.11)	× 0.1	0
ン	1,2,3,6,7,8-HxCDF	0.06	0.21	(0.07)		0
ゾ	1,2,3,7,8,9-HxCDF	0.1	0.3	N.D.		0
フ	2,3,4,6,7,8-HxCDF	0.07	0.22	(0.12)		0
ラ	HxCDFs	0.06	0.19	1.8		_
ン	1,2,3,4,6,7,8-HpCDF	0.06	0.22	0.38	× 0.01	0.0038
	1,2,3,4,7,8,9-HpCDF	0.09	0.29	N.D.		0
	HpCDFs	0.06	0.22	1.5		_
	OCDF	0.1	0.3	(0.2)	× 0.0003	0
	Total PCDFs	-	_	4.9		0.0038
	Total PCDDs+PCDFs	_	_	22		0.014
	3,3',4,4'-TeCB(#77)	0.06	0.18	3.7	× 0.0001	0.00037
	3,4,4',5-TeCB(#81)	0.06	0.21	(0.19)	× 0.0003	0
	3,3',4,4',5-PeCB(#126)	0.08	0.26	N.D.	× 0.1	0
	3,3',4,4',5,5'-HxCB(#169)	0.05	0.17	N.D.	× 0.03	0
С	Non-ortho PCBs	_	_	3.8		0.00037
0	2',3,4,4',5-PeCB(#123)	0.07	0.23	0.25	× 0.00003	0.0000075
	2,3',4,4',5-PeCB(#118)	0.1	0.3	13	× 0.00003	0.00039
Р	2,3,3',4,4'-PeCB(#105)	0.08	0.27	5.3	× 0.00003	0.000159
С	2,3,4,4',5+3,3',4,5,5'-PeCB(#114+#127)	0.07	0.22	0.46	×0.00003	0.0000138
В	2,3',4,4',5,5'-HxCB(#167)	0.1	0.3	(0.3)	× 0.00003	0
s	2,3,3',4,4',5-HxCB(#156)	0.09	0.30	0.42	× 0.00003	0.0000126
	2,3,3',4,4',5'-HxCB(#157)	0.08	0.28	(0.09)	× 0.00003	0
	2,3,3',4,4',5,5'-HpCB(#189)	0.09	0.29	N.D.	× 0.00003	0
	Mono-ortho PCBs	_	_	20		0.00058
	Total Co-PCBs	-	ı	24		0.00095
	Total PCDDs+PCDFs+Co-PCBs	_	_	46		0.015

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

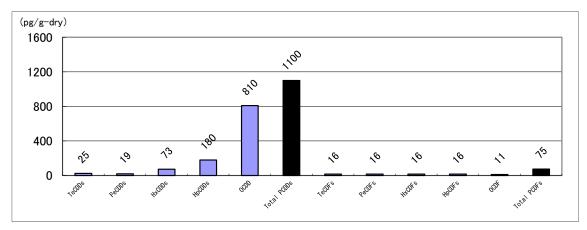
^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量:定量下限未満の実測濃度をOとして算出する。

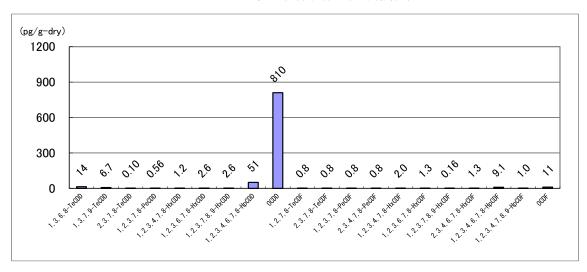
^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、 表示上の数値を合計しても一致しない場合がある。

表 4-4-2-10 ダイオキシン類調査結果 (底質・溶出試験: St. 4)

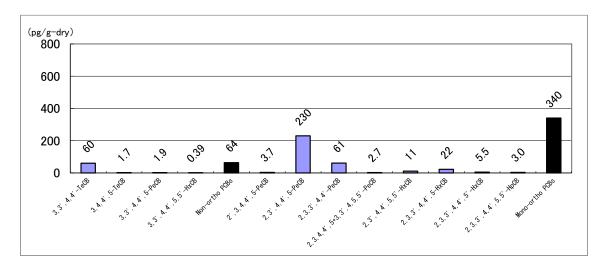
	試料名	St.4		試料媒体		溶出液
	採取日	2025年1月23日		試料量(L	_)	5.4
_						毒性当量
		検出下限値	定量下限値	実測濃度		WHO-TEF,2006
		pg/L	pg/L	pg/L		pg-TEQ/L
	1,3,6,8-TeCDD	0.05	0.16	0.76		_
	1,3,7,9-TeCDD	0.05	0.16	0.70		_
	2,3,7,8-TeCDD	0.05	0.16	N.D.	×1	0
	TeCDDs	0.05	0.16	4.5		_
ľ	1,2,3,7,8-PeCDD	0.04	0.13	N.D.	×1	0
1	PeCDDs	0.04	0.13	1.7		_
-	1,2,3,4,7,8-HxCDD	0.08	0.27	N.D.	× 0.1	0
-	1,2,3,6,7,8-HxCDD	0.09	0.29	N.D.		0
,	1,2,3,7,8,9-HxCDD	0.08	0.28	N.D.		0
,	HxCDDs	0.08	0.27	1.2		_
	1.2.3.4.6.7.8-HpCDD	0.1	0.3	0.4	×0.01	0.004
	HpCDDs	0.1	0.3	1.7		_
	OCDD	0.09	0.31	5.4	×0.0003	0.00162
	Total PCDDs	_	_	15		0.0056
	1.2.7.8-TeCDF	0.05	0.17	0.19		_
	2.3.7.8-TeCDF	0.05	0.17	(0.10)	× 0.1	0
	TeCDFs	0.05	0.17	6.8		_
	1,2,3,7,8-PeCDF	0.05	0.17	(0.06)	×0.03	0
	2,3,4,7,8-PeCDF	0.05	0.17	N.D.	×0.3	0
;	PeCDFs	0.05	0.17	2.7		_
Ċ	1,2,3,4,7,8-HxCDF	0.06	0.19	N.D.	× 0.1	0
,	1,2,3,6,7,8-HxCDF	0.06	0.21	(0.09)		0
ï	1,2,3,7,8,9-HxCDF	0.00	0.21	N.D.		0
,	2,3,4,6,7,8-HxCDF	0.07	0.22	(0.08)		0
,	HxCDFs	0.06	0.19	0.66		_
,	1,2,3,4,6,7,8-HpCDF	0.06	0.21	(0.11)	× 0.01	0
	1,2,3,4,7,8,9-HpCDF	0.00	0.29	N.D.		0
	HpCDFs	0.06	0.21	0.39		
	OCDF	0.1	0.3	(0.2)	×0.0003	0
	Total PCDFs	-	-	11		0
	Total PCDDs+PCDFs	_	_	25		0.0056
	3,3',4,4'-TeCB(#77)	0.06	0.18	3.9	×0.0001	0.00039
	3.4.4'.5-TeCB(#81)	0.06	0.21	0.22	×0.0003	0.000066
	3,3',4,4',5-PeCB(#126)	0.08	0.26	(0.22)	× 0.1	0.000000
	3,3',4,4',5,5'-HxCB(#169)	0.05	0.16	N.D.	×0.03	0
;	Non-ortho PCBs	-	-	4.3		0.00046
,	2',3,4,4',5-PeCB(#123)	0.07	0.22	(0.13)	×0.00003	0.00040
	2,3',4,4',5-PeCB(#118)	0.07	0.22	6.0	×0.00003	0.000180
)	2,3,3',4,4'-PeCB(#105)	0.08	0.27	3.7	×0.00003	0.000111
;	2,3,4,4',5+3,3',4,5,5'-PeCB(#114+#127)	0.07	0.22	0.65	×0.00003	0.0000195
	2,3',4,4',5,5'-HxCB(#167)	0.07	0.3	(0.2)	×0.00003	0.0000100
	2,3,3',4,4',5-HxCB(#156)	0.09	0.30	0.43	×0.00003	0.0000129
	2,3,3',4,4',5'-HxGB(#157)	0.08	0.27	(0.13)	×0.00003	0
	2,3,3',4,4',5,5'-HpCB(#189)	0.09	0.29	N.D.	×0.00003	0
	Mono-ortho PCBs	-	-	11		0.00032
	Total Co-PCBs	_	_	16	1	0.00032
_	Total PCDDs+PCDFs+Co-PCBs	1	1	41	+	0.0064


^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-TeCDDの毒性に換算したものであり計量の対象外である。

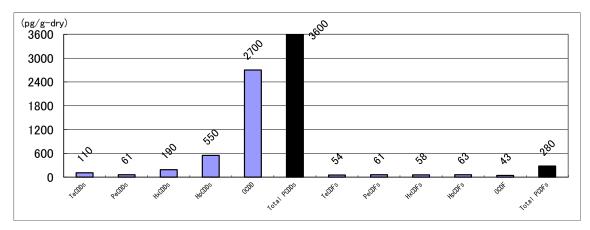
^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。


^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

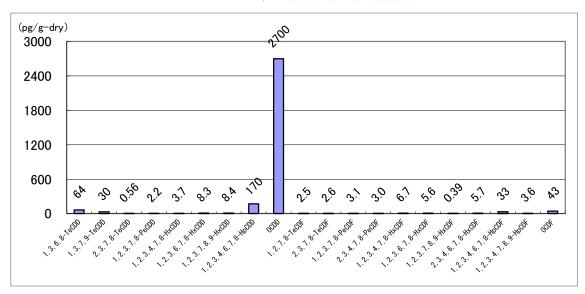
^{4.} 毒性当量:定量下限未満の実測濃度をOとして算出する。


^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、表示上の数値を合計しても一致しない場合がある。

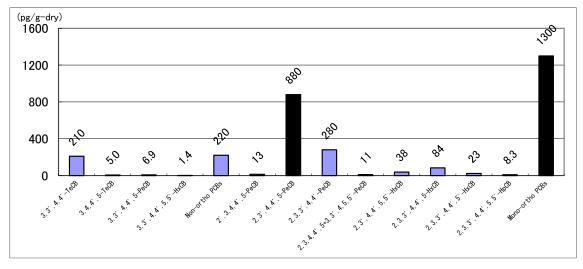
ダイオキシン類同族体組成 (実測濃度)



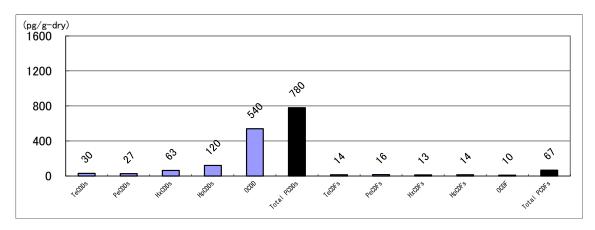
ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)



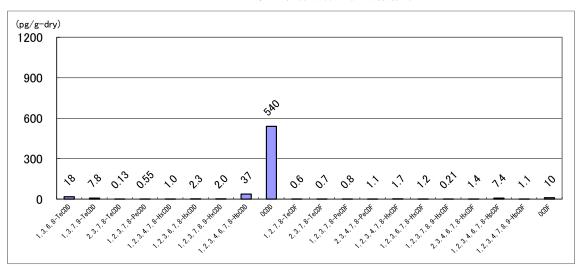
Co-PCBs 異性体組成 (実測濃度)


図4-2-2-1 同族体および異性体の組成(底質:St.1)

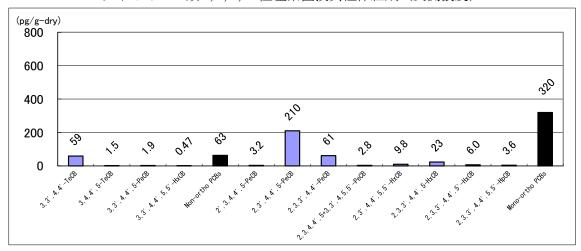
ダイオキシン類同族体組成 (実測濃度)



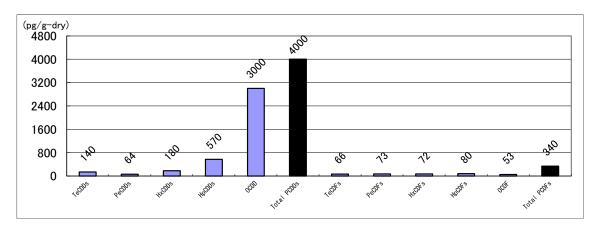
ダイオキシン類 2, 3, 7, 8-位塩素置換異性体組成 (実測濃度)



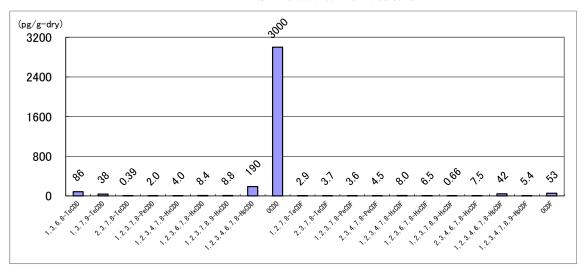
Co-PCBs 異性体組成 (実測濃度)


図4-2-2-2 同族体および異性体の組成(底質:St. 2)

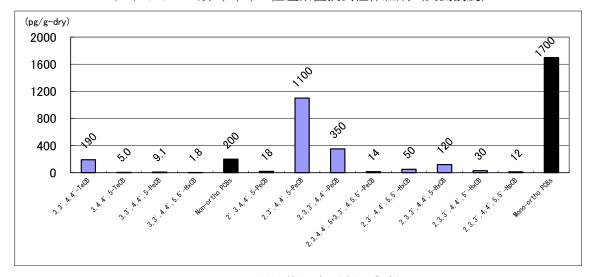
ダイオキシン類同族体組成 (実測濃度)



ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)



Co-PCBs 異性体組成 (実測濃度)


図4-2-2-3 同族体および異性体の組成(底質:St.3)

ダイオキシン類同族体組成 (実測濃度)

ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)

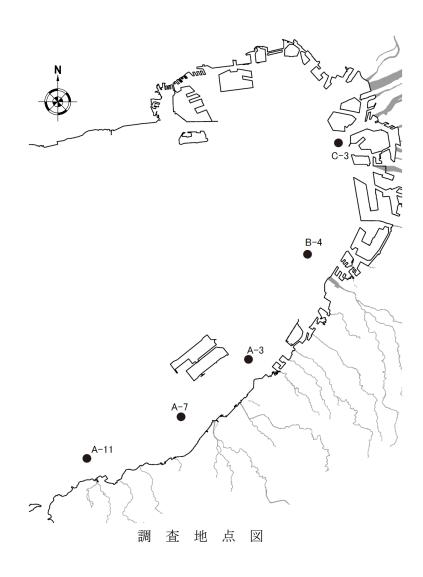

Co-PCBs 異性体組成 (実測濃度)

図4-2-2-4 同族体および異性体の組成(底質:St. 4)

参考資料 令和5年度ダイオキシン類常時監視結果

調査地点	水質調査結果	底質調査結果
明且地点	(pg-TEQ/L)	(pg-TEQ/g)
C-3	0.041	16
B-4	0.031	12
A-3	0.031	9. 2
A-7	0.034	7. 7
A-11	0.031	1. 1
平均值	0.034	9. 2

備考:大阪府ホームページ内の「大阪府ダイオキシン類常時監視結果」より抜粋。

