平成 26 年度

阪南2区整備事業に係る環境調査

海域環境調查

月報(8月分)

目 次

1.	調査目的		1
2.	調査日および	び調査内容	1
3.	調査場所		1
4.	調査結果		4
4	1-1 水質	調査結果	4
	4 - 1 - 1	定点監視結果および環境基準との比較	4
	4 - 1 - 2	補助監視結果および環境基準、監視基準との比較	11
4	1-2 底質	調査結果	23
4	1-3 水生生	生物調査結果	27
	4 - 3 - 1	植物プランクトン調査結果	27
	4 - 3 - 2	動物プランクトン調査結果	27
	4 - 3 - 3	底生生物調査結果	27
	4 - 3 - 4	魚卵·稚仔魚調査結果	29
	4 - 3 - 5	付着生物調査結果	30
	4 - 3 - 6	漁獲対象動植物調査結果	32
4	1-4 ダイン	オキシン類調査結果	75
	4 - 4 - 1	水質調査結果	75
	4 - 4 - 2	底質調査結果	88

1. 調查目的

本調査は、阪南2区整備事業において、埋立工事が周辺海域に及ぼす影響を監視することを目的とする。

2. 調査日および調査内容

調査日および調査内容を表2に示す。

表 2 調査日および調査内容

調査日	水質	水質調査		水生生物調査	調査内容	
加且 口	定点監視	補助監視	- 底質調査 水生生物調査		如 担	
					採水・分析及び現場機器測定	
8月5日	0	0 0		\circ	(水温、pH、塩分、DO、濁度、流向・流速)	
					植物プランクトン、動物プランクトン	
8月6日)	0	底質・底生生物、魚卵・稚仔魚	
0月10日			O	漁	漁獲対象動植物(刺し網設置)	
8月7日				0	漁獲対象動植物(刺し網回収、底引網の曳網)	
8月8日				0	付着生物	
8月12日		0			現場機器測定(水温、pH、塩分、DO、濁度)	
8月20日		0			現場機器測定(水温、pH、塩分、DO、濁度)	
8月27日				現場機器測定(水温、pH、塩分、DO、濁度)		

3. 調査場所

岸和田市岸之浦町地先の阪南 2 区周辺海域において、水質の定点監視は St. $1 \sim$ St. 4の 4 地点、補助監視は護岸開口部の St. S-1、St. S-2の 2 地点およびバックグラウンドを把握するため St. $B-1 \sim$ St. B-3の 3 地点で行った。

底質の調査は St. $1 \sim$ St. 4 の 4 地点、水生生物の動植物プランクトン、魚卵・稚仔魚、底生生物は St. $1 \sim$ St. 4 の 4 地点、付着生物は St. A、St. Bの 2 地点、漁獲対象動植物は St. 4 の 1 地点で行った。

また、ダイオキシン類調査のうち、水質調査は St. $1 \sim St. 4$ 、St. S-1、St. S-2の 6 地点、底質調査は St. $1 \sim St. 4$ の 4 地点で行った。

調査地点の緯度、経度を表3に、調査地点を図3に示す。

表3 調査位置と調査内容

	調査位置		水質	水質調査		水生生物調査		
	位	定点 補助		動植物プラン クトン、魚	t l Mart alt	漁獲対象		
地点名	北緯	東経	監視	監視	H)FL	卵・稚仔魚、 底生生物	付着生物	動植物
St. 1	34° 28′ 57″	135° 20′ 57″	0		0	0		
St. 2	34° 28′ 02″	135° 20′ 42″	0		\circ	0		
St. 3	34° 29′ 12″	135° 21′ 43″	0		0	0		
St. 4	34° 28′ 02″	135° 21′ 22″	0		0	0		
St. S-1	34° 29′ 15″	135° 21′ 21″		0				
St. S-2	34° 28′ 14″	135° 20′ 46″		0				
St. B-1	34° 29′ 50″	135° 21′ 11″		0				
St. B-2	34° 28′ 57″	135° 20′ 31″		0				
St. B-3	34° 27′ 18″	135° 20′ 55″		0				
St. A	34° 28′ 31″	135° 20′ 55″					0	
St.B	34° 28′ 14″	135° 21′ 27″					0	
St.イ	34° 29′ 05″	135° 20′ 52″						0

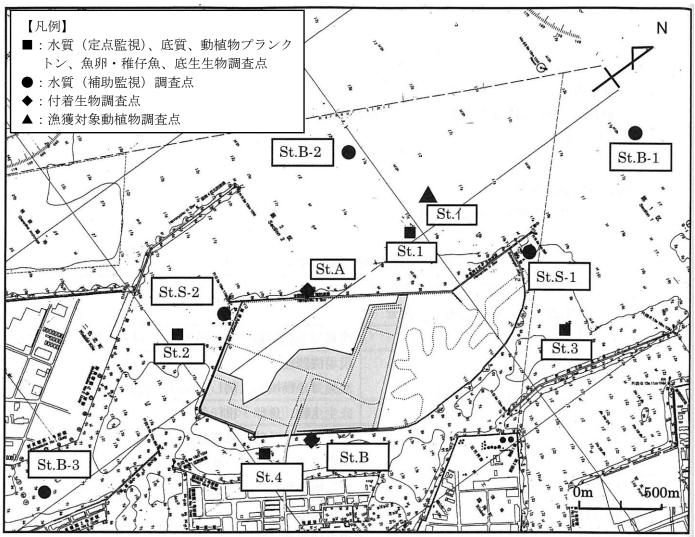


図3 調査地点

4. 調査結果

4-1 水質調査結果

4-1-1 定点監視結果および環境基準との比較

水質調査結果を表 4-1-1-1~表 4-1-1-2、現場機器測定結果を表 4-1-1-3、定点監視野帳を表 4-1-1-4に示す。また、環境基準との比較を表 4-1-1-5~表 4-1-1-6に示す。当調査海域の環境基準は、昭和 46年環境庁告示第 59号別表 2 「生活環境の保全に関する環境基準」の「2海域」における表アの C 類型、表 4の1V類型に該当する。

1)調査地点の概況

特記事項はなし。

2) 現場機器測定

pHは、全地点全層において環境基準を満たしていた。

DOは、St.4の下層において環境基準を満たしていなかった。

濁度は、全地点全層において特に高い値はみられなかった。

3) 採水分析項目

SSは、全地点全層において特に高い値はみられなかった。

VSSは、全地点全層において特に高い値はみられなかった。

CODは、全地点全層において環境基準を満たしていた。

全窒素は、全地点全層において環境基準を満たしていた。

全リンは、全地点全層において環境基準を満たしていた。

クロロフィルaは、St.3の上層においてやや高い値がみられた。

「人の健康の保護に関する環境基準」項目の結果は、全項目において報告下限値未満であり、環境基準に適合していた。

特殊項目の結果は、亜鉛を除いて報告下限値未満であった。

表 4-1-1-1 水質調査結果(定点監視)

調査年月日:平成26年8月5日

								-月日 . 平成20年6月5日	
項目\地点	番号	1	2	3	4	最小値	~	最大値	平均値
調査時刻	刺	9:50	11:52	13:05	11:33				
水温	上層	26. 2	26. 4	26. 5	26. 6	26. 2	~	26. 6	26. 4
(℃)	下層	25. 4	24. 7	25. 9	24. 2	24. 2	~	25. 9	25. 1
塩分	上層	31. 7	31. 6	31. 7	31. 3	31. 3	~	31. 7	31.6
鱼刀	下層	32. 2	32. 2	31. 9	32. 3	31. 9	\sim	32. 3	32. 2
濁度	上層	<1	<1	<1	<1	<1	~	<1	<1
度 (カオリン)	下層	2	1	<1	1	<1	~	2	1
. II	上層	8. 2	8. 1	8. 2	8. 1	8. 1	~	8. 2	-
рΗ	下層	7. 9	7. 9	8. 1	7. 7	7. 7	~	8. 1	_
SS	上層	2	1	1	1	1	~	2	1
(mg/L)	下層	3	1	1	1	1	~	3	2
VSS	上層	1	<1	1	1	<1	~	1	1
(mg/L)	下層	1	<1	<1	1	<1	~	1	1
COD	上層	2. 5	2. 6	2. 5	2. 2	2. 2	~	2. 6	2.5
(mg/L)	下層	2. 1	1.8	2. 0	1.4	1.4	~	2. 1	1.8
DO	上層	6. 9	6. 3	7. 7	6. 2	6. 2	~	7. 7	6.8
(mg/L)	下層	3. 6	2. 2	6. 1	1.0	1.0	~	6. 1	3. 2
全窒素	上層	0. 24	0. 26	0. 27	0.30	0. 24	~	0.30	0. 27
(mg/L)	下層	0. 23	0. 25	0. 21	0. 27	0. 21	~	0. 27	0. 24
全リン	上層	0.024	0.031	0. 025	0.040	0.024	~	0. 040	0.030
(mg/L)	下層	0. 032	0.044	0. 021	0.051	0.021	~	0. 051	0. 037
วยยวา/Na	上層	8. 0	4.9	10	6.5	4. 9	~	10	7. 4
(μg/L)	下層	1.6	1. 1	5. 5	1.3	1. 1	~	5. 5	2. 4

測定層は上層:海面下1m、下層:海底面上2m 平均値は、下限値未満(<1)を「1」として計算した。

表 4-1-1-2 水質調査結果(健康項目等)

調査年月日 : 平成26年8月5日

1, 1, 1ートリクロロエタン mg/L <0.0005 <0.0005 <0.0005 <0.0005 1, 1, 2ートリクロロエタン mg/L <0.0006 <0.0006 <0.0006 <0.0006 トリクロロエチレン mg/L <0.002 <0.002 <0.002 <0.002					口 · 平成乙	7十0万0日
全シアン mg/L	項目\調査地点	単位	St. 1	St. 2	St. 3	St. 4
対価	カドミウム	mg/L	<0.001	<0.001	<0.001	<0.001
大価クロム	全シアン	mg/L	<0.1	<0.1	<0.1	<0.1
砒素 mg/L	鉛	mg/L	<0.005	<0.005	<0.005	<0.005
総水銀 mg/L	六価クロム	mg/L	<0.02	<0.02	<0.02	<0.02
アルキル水銀 mg/L	砒素	mg/L	<0.005	<0.005	<0.005	<0.005
PCB ng/L (0.0005 (0.0005 (0.0005 (0.0005 (0.0005 ジクロロメタン ng/L (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.0005 (0.005 (0.005	総水銀	mg/L	<0.0005	<0.0005	<0.0005	<0.0005
ジクロロメタン mg/L	アルキル水銀	mg/L	<0.0005	<0.0005	<0.0005	<0.0005
四塩化炭素 mg/L	PCB	mg/L	<0.0005	<0.0005	<0.0005	<0.0005
1, 2-ジクロロエタン mg/L	ジクロロメタン	mg/L	<0.002	<0.002	<0.002	<0.002
1, 1-ジクロロエチレン mg/L	四塩化炭素	mg/L	<0.0002	<0.0002	<0.0002	<0.0002
ジス-1, 2-ジクロロエチレン mg/L <0.004 <0.004 <0.004 <0.004 1, 1, 1-トリクロロエタン mg/L <0.0005	1,2-ジクロロエタン	mg/L	<0.0004	<0.0004	<0.0004	<0.0004
1,1,1-トリクロロエタン	1, 1-ジクロロエチレン	mg/L	<0.002	<0.002	<0.002	<0.002
1,1,2-トリクロロエタン mg/L	シスー1, 2ーシ゛クロロエチレン	mg/L	<0.004	<0.004	<0.004	<0.004
トリクロロエチレン mg/L	1, 1, 1ートリクロロエタン	mg/L	<0.0005	<0.0005	<0.0005	<0.0005
Thラクロロエチレン	1, 1, 2-トリクロロエタン	mg/L	<0.0006	<0.0006	<0.0006	<0.0006
1,3-ジクロロプロペン mg/L	トリクロロエチレン	mg/L	<0.002	<0.002	<0.002	<0.002
チウラム mg/L <0.0006 <0.0006 <0.0006 <0.0006 シマジン mg/L <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 チオベンカルブ mg/L <0.002 <0.002 <0.002 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.003 <0.008 <0.008 <0.008 <0.008 <0.008 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	テトラクロロエチレン	mg/L	<0.0005	<0.0005	<0.0005	<0.0005
シマジン mg/L <0.0003 <0.0003 <0.0003 <0.0003 チオベンカルブ mg/L <0.002 <0.002 <0.002 <0.002 <0.002 ベンゼン mg/L <0.001 <0.001 <0.001 <0.001 <0.001 せレン mg/L <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 硝酸性窒素 mg/L <0.08 <0.08 <0.08 <0.08 <0.08 フェノール類 mg/L <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 銅 mg/L <0.006 0.002 <0.005 <0.005 <0.005 産針 mg/L <0.08 <0.08 <0.08 <0.08 溶解性状 mg/L <0.01 <0.01 <0.01 <0.01 <0.01 全クロム mg/L <0.03 <0.03 <0.03 <0.03 <0.03	1, 3-ジクロロプロペン	mg/L	<0.0002	<0.0002	<0.0002	<0.0002
手オベンカルブ mg/L <0.002 <0.002 <0.002 <0.002 ベンゼン mg/L <0.001	チウラム	mg/L	<0.0006	<0.0006	<0.0006	<0.0006
ボンゼン mg/L 〈0.001 〈0.001 〈0.001 〈0.001 セレン mg/L 〈0.002 〈0.002 〈0.002 〈0.002 〈0.002 硝酸性窒素 mg/L 〈0.08 〈0.08 〈0.08 〈0.08 亜硝酸性窒素 mg/L 〈0.08 〈0.08 〈0.08 〈0.08 フェノール類 mg/L 〈0.005 〈0.005 〈0.005 〈0.005 銅 mg/L 〈0.005 〈0.005 〈0.005 〈0.005 〈0.005 亜鉛 mg/L 〈0.006 0.002 0.002 0.003 溶解性鉄 mg/L 〈0.08 〈0.08 〈0.08 〈0.08 〈0.08 溶解性マンガン mg/L 〈0.01 〈0.01 〈0.01 〈0.01 〈0.01 全クロム mg/L 〈0.03 〈0.03 〈0.03 〈0.03	シマジン	mg/L	<0.0003	<0.0003	<0.0003	<0.0003
セレン mg/L <0.002 <0.002 <0.002 <0.002 硝酸性窒素 mg/L <0.08	チオベンカルブ	mg/L	<0.002	<0.002	<0.002	<0.002
研酸性窒素 mg/L <0.08 <0.08 <0.08 <0.08 亜硝酸性窒素 mg/L <0.08 <0.08 <0.08 <0.08 フェノール類 mg/L <0.005 <0.005 <0.005 <0.005 銅 mg/L <0.005 <0.005 <0.005 <0.005 亜鉛 mg/L 0.006 0.002 0.002 0.003 溶解性鉄 mg/L <0.08 <0.08 <0.08 <0.08 溶解性マンガン mg/L <0.01 <0.01 <0.01 <0.01 <0.01 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08	ベンゼン	mg/L	<0.001	<0.001	<0.001	<0.001
亜硝酸性窒素 mg/L < 0.08 < 0.08 < 0.08 フェノール類 mg/L < 0.005	セレン	mg/L	<0.002	<0.002	<0.002	<0.002
フェノール類 mg/L <0.005 <0.005 <0.005 <0.005 銅 mg/L <0.005	硝酸性窒素	mg/L	<0.08	<0.08	<0.08	<0.08
銅 mg/L <0.005 <0.005 <0.005 <0.005 亜鉛 mg/L 0.006 0.002 0.002 0.002 溶解性鉄 mg/L <0.08	亜硝酸性窒素	mg/L	<0.08	<0.08	<0.08	<0.08
亜鉛 mg/L 0.006 0.002 0.002 0.003 溶解性鉄 mg/L <0.08 <0.08 <0.08 <0.08 溶解性マンガン mg/L <0.01 <0.01 <0.01 <0.01 全クロム mg/L <0.03 <0.03 <0.03 <0.03	フェノール類	mg/L	<0.005	<0.005	<0.005	<0.005
溶解性鉄 mg/L < 0.08 < 0.08 < 0.08 < 0.08 溶解性マンガン mg/L < 0.01 < 0.01 < 0.01 < 0.01 全クロム mg/L < 0.03 < 0.03 < 0.03 < 0.03	銅	mg/L	<0.005	<0.005	<0.005	<0.005
溶解性マンガン mg/L < 0.01 < 0.01 < 0.01 全クロム mg/L < 0.03	亜鉛	mg/L	0.006	0.002	0.002	0.003
全クロム mg/L <0.03 <0.03 <0.03 <0.03	溶解性鉄	mg/L	<0.08	<0.08	<0.08	<0.08
<u> </u>	溶解性マンガン	mg/L	<0.01	<0.01	<0.01	<0.01
n-ヘキサン抽出物質 mg/L <0.5 <0.5 <0.5 <0.5	全クロム	mg/L	<0.03	<0.03	<0.03	<0.03
	n-ヘキサン抽出物質	mg/L	<0.5	<0.5	<0.5	<0.5

表 4-1-1-3 現場機器測定結果

調査地点	1								
時刻		9:50							
水深(m)	12.3								
項目	水温	塩分	pН	DO	DO	濁度			
層(m)	(℃)	(-)		(mg/L)	(%)	(度(カオリン))			
0.5	26.2	31.7	8.2	6.9	103	<1			
1.0	26.2	31.7	8.2	6.9	103	<1			
2.0	26.2	31.7	8.2	6.9	103	<1			
3.0	26.2	31.7	8.2	6.9	103	<1			
4.0	26.2	31.8	8.2	6.9	103	<1			
5.0	26.1	31.8	8.2	6.9	103	<1			
6.0	26.1	31.8	8.2	7.0	104	<1			
7.0	26.1	31.8	8.2	7.0	104	<1			
8.0	26.0	31.8	8.2	7.0	104	<1			
9.0	26.0	31.8	8.2	6.9	103	<1			
10.0	25.5	32.1	8.1	5.3	79	2			
11.0	_	-	-	-	-	-			
12.0	-	-	-	-	-	-			
13.0		-	-		-	-			
14.0	-	-	-	-	-	-			
15.0	_	_	_	_	-	-			
B-2.0	25.4	32.2	7.9	3.6	54	2			
B-1.0	24.6	32.3	7.8	2.7	40	2			
B-0.5	24.2	32.4	7.7	1.8	26	3			

	調査年月日: 平成26年8月5日									
調査地点		2								
時刻		11:52								
水深(m)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	13.9	p					
項目	水温	塩分	pН	DO	DO	濁度				
層(m)	(℃)	(-)		(mg/L)	(%)	(度(カオリン))				
0.5	26.4	31.6	8.1	6.3	95	<1				
1.0	26.4	31.6	8.1	6.3	95	<1				
2.0	26.4	31.6	8.1	6.2	93	<1				
3.0	26.4	31.6	8.1	6.1	92	<1				
4.0	26.3	31.6	8.1	6.2	93	<1				
5.0	26.3	31.6	8.1	5.4	81	<1				
6.0	25.7	31.8	8.0	4.7	70	<1				
7.0	25.7	31.9	8.0	4.8	72	<1				
8.0	25.5	31.9	8.0	4.7	69	<1				
9.0	25.4	31.9	8.0	4.3	64	<1				
10.0	25.3	31.9	8.0	4.1	61	<1				
11.0	24.9	32.1	7.9	2.4	35	<1				
12.0	-	_	-	-	-	-				
13.0	_	_	-	_	_	_				
14.0	-	_	_	-	-	-				
15.0			-	-	-	_				
B-2.0	24.7	32.2	7.9	2.2	32	1				
B-1.0	23.9	32.3	7.7	0.9	14	3				
B-0.5	23.6	32.3	7.6	<0.5	1	4				

調査地点 3									
時刻		13:05							
水深(m)			~~~~~	9.0					
項目	水温	塩分	pН	DO	DO	濁度			
層(m)	(℃)	(-)		(mg/L)	(%)	(度(カオリン))			
0.5	26.5	31.7	8.2	7.7	116	<1			
1.0	26.5	31.7	8.2	7.7	115	<1			
2.0	26.5	31.7	8.2	7.8	117	<1			
3.0	26.4	31.7	8.2	7.7	116	<1			
4.0	26.4	31.7	8.2	7.5	113	<1			
5.0	26.3	31.7	8.2	7.4	110	<1			
6.0	26.2	31.8	8.2	7.2	107	<1			
7.0	_	-	-		-	-			
8.0	-	-	-	-	-	-			
9.0		-			-				
10.0		-	-		-				
11.0		-			_	-			
12.0	_	-			_	_			
13.0	-	-	-	-	-	-			
14.0	-	-	-	-	-	-			
15.0		-	-		-	-			
B-2.0	25.9	31.9	8.1	6.1	91	<1			
B-1.0	25.7	31.9	8.1	6.1	91	<1			
B-0.5	25.7	31.9	8.1	6.1	90	<1			

調査地点	4								
時刻		11:33							
水深(m)	12.1								
項目	水温	塩分	pН	DO	DO	濁度			
層(m)	(℃)	(-)		(mg/L)	(%)	(度(カオリン))			
0.5	26.6	31.4	8.1	6.2	93	1			
1.0	26.6	31.3	8.1	6.2	93	<1			
2.0	26.6	31.4	8.1	6.1	91	<1			
3.0	26.5	31.5	8.1	6.1	91	<1			
4.0	25.9	31.8	8.1	5.7	85	<1			
5.0	25.9	31.7	8.1	5.7	85	<1			
6.0	25.8	31.7	8.1	5.7	84	<1			
7.0	25.6	31.9	8.1	5.3	78	<1			
8.0	25.1	32.0	8.0	3.7	55	<1			
9.0	24.5	32.1	7.8	2.7	40	11			
10.0	24.3	32.3	7.7	0.7	11	1			
11.0			_	-	-	-			
12.0	-		_	-	-	-			
13.0	-	-	-	-	-	-			
14.0	-	-	-	-	-	-			
15.0	_			-	-	-			
B-2.0	24.2	32.3	7.7	1.0	15	1			
B-1.0	23.7	32.3	7.7	<0.5	0	1			
B-0.5	23.6	32.3	7.6	<0.5	0	2			

表 4-1-1-4 定点監視野帳

項目		層	St. 1	St. 2	St. 3	St. 4
調査日			8月5日	8月5日	8月5日	8月5日
調査開始時刻			9:50	11:52	13:05	11:33
天気・雲量			晴・7	晴・6	晴・6	晴・6
風向・風力			SSW · 3	SW • 3	SW • 3	SW • 3
風浪階級			3	2	2	2
気温	$^{\circ}$ C		30. 5	32. 2	33. 1	33.6
水深	m		12. 3	13. 9	9. 0	12. 1
透明度	m		5.8	6. 3	5. 2	5. 1
水色			dark yellowish	dark yellowish	dark yellowish	dark yellowish
			green	green	green	green
(マンセル値)			(10GY3/4)	(10GY3/4)	(10GY3/4)	(10GY3/4)
赤潮の有無			無	無	無	無
油膜の有無			無	無	無	無
水温	$^{\circ}$ C	上	26. 2	26. 4	26. 5	26.6
		下	25.4	24. 7	25. 9	24. 2
透視度	度	上	>50	>50	>50	>50
		下	>50	>50	>50	>50
流速	cm/sec	上	1.8	12.6	19.8	22.6
		下	0.3	8.3	18.6	5. 7
流向	(°)	十	319	110	64	56
		下	97	280	279	165

注:測定層は、上層は海面下1.0m、下層は海底上2.0m。

表4-1-1-5 定点監視調査結果と環境基準との比較

調査年月日 : 平成26年8月5日

項目\均	也点番号	St. 1	St. 2	St. 3	St. 4	環境基準値 ^{注)}
	上層	0	0	0	0	
рН	下層	0	0	0	0	7.0以上8.3以下
COD	上層	0	0	0	0	Om or /1 1/1 T
СОД	下層	0	0	0	0	8mg/L 以下
DO	上層	0	0	0	0	2mg/L 以上
ЪО	下層	0	0	0	×	Ziiig/ L UX L
全窒素	上層	0	0	0	0	1mg/L 以下
土主米	下層	0	0	0	0	Illig/L Ø [·
全リン	上層	0	0	0	0	0.09mg/L 以下
至り~	下層	0	0	0	0	O. Obilig/ L 以下

備考)○:基準内 ×:基準外

注)環境基準値は「生活環境の保全に関する環境基準」による。当調査海域はC類型、IV類型に該当。

表4-1-1-6 定点監視調査結果と環境基準との比較

調査年月日 : 平成26年8月5日

	H/H	1五十万日 : 十八20十0万0日			
項目\地点番号	St. 1	St. 2	St. 3	St. 4	環境基準値 ^{注1)}
カドミウム	0	0	0	0	0.003mg/L以下
全シアン	0	0	0	0	検出されないこと ^{注2)}
鉛	0	0	0	0	0.01mg/L以下
六価クロム	0	0	0	0	0.05mg/L以下
砒素	0	0	0	0	0.01mg/L以下
総水銀	0	0	0	0	0.0005mg/L以下
アルキル水銀	0	0	0	0	検出されないこと
PCB	0	0	0	0	検出されないこと
ジクロロメタン	0	0	0	0	0.02mg/L以下
四塩化炭素	0	0	0	0	0.002mg/L以下
1, 2-ジクロロエタン	0	0	0	0	0.004mg/L以下
1, 1-ジクロロエチレン	0	0	0	0	0.1mg/L以下
シスー1, 2ーシ゛クロロエチレン	0	0	0	0	0.04mg/L以下
1, 1, 1-トリクロロエタン	0	0	0	0	1mg/L以下
1, 1, 2-トリクロロエタン	0	0	0	0	0.006mg/L以下
トリクロロエチレン	0	0	0	0	0.03mg/L以下
テトラクロロエチレン	0	0	0	0	0.01mg/L以下
1, 3-ジクロロプロペン	0	0	0	0	0.002mg/L以下
チウラム	0	0	0	0	0.006mg/L以下
シマジン	0	0	0	0	0.003mg/L以下
チオベンカルブ	0	0	0	0	0.02mg/L以下
ベンゼン	0	0	0	0	0.01mg/L以下
セレン	0	0	0	0	0.01mg/L以下
硝酸性窒素	0	0	0	0	10/11/15
亜硝酸性窒素	0	0	0	0	10mg/L以下

備考)○:基準内 ×:基準外

注1) 環境基準値は「人の健康の保護に関する環境基準」による。

注2) 「検出されないこと」とは、分析方法に掲げる方法により分析した場合において、 その結果が当該方法の定量下限値を下回ることをいう。 4-1-2 補助監視結果および環境基準、監視基準との比較

水質調査結果を表 4-1-2-1~表 4-1-2-4、補助監視野帳を表 4-1-2-5~表 4-1-2-8 に示す。また、環境基準との比較を表 4-1-2-9、監視基準との比較を表 4-1-2-10 に示す。

なお、護岸開口部の St. S -1 と St. S -2 における濁度の監視基準は、バックグラウンドの最低値との差が上層は+3 度(カオリン)未満、下層は+11 度(カオリン)未満としている。

- 8月5日
- 1)調査地点の概況 特記事項はなし。
- 2) 現場機器測定

p Hは、全地点全層において環境基準を満たしていた。

DOは、全地点全層において環境基準を満たしていた。

濁度は、全地点全層において特に高い値はみられず、護岸開口部で監視基準値を超える 濁りはみられなかった。

3) 採水分析項目

SSは、全地点全層において特に高い値はみられなかった。 VSSは、全地点全層において特に高い値はみられなかった。

- 8月12日
- 1)調査地点の概況 特記事項はなし。
- 2) 現場機器測定

p Hは、全地点全層において環境基準を満たしていた。

DOは、全地点全層において環境基準を満たしていた。

濁度は、全地点全層において特に高い値はみられず、護岸開口部で監視基準値を超える濁りはみられなかった。

- 8月20日
- 調査地点の概況 特記事項はなし。
- 2) 現場機器測定

pHは、全地点の上層において環境基準を満たしていなかった。

DOは、全地点全層において環境基準を満たしていた。

濁度は、全地点全層において特に高い値はみられず、護岸開口部で監視基準値を超え

る濁りはみられなかった。

- 8月27日
- 1)調査地点の概況 特記事項はなし。
- 2) 現場機器測定

pHは、St. B-3の上層において環境基準を満たしていなかった。

DOは、全地点全層において環境基準を満たしていた。

濁度は、全地点全層において特に高い値はみられず、護岸開口部で監視基準値を超える濁りはみられなかった。

表 4-1-2-1 水質調査結果(補助監視地点)

調査年月日 : 平成26年8月5日

項目\地,	点番号	S – 1	S - 2	最小値	~	最大値	B - 1	B - 2	B - 3	平均値
調査時	:刻	10 : 55	11 : 33		_		10 : 42	10 : 29	11 : 19	_
水温	上層	26. 3	26. 7	26. 3	\sim	26. 7	26. 1	26. 2	26. 3	26. 2
(℃)	下層	25. 9	25. 3	25. 3	~	25. 9	25. 0	25. 3	25. 3	25. 2
塩分	上層	31. 7	31. 1	31. 1	\sim	31. 7	31.8	31. 7	31. 4	31.6
	下層	31. 9	32. 0	31. 9	~	32.0	32. 1	32. 0	32. 0	32. 0
濁度	上層	<1	<1	<1	~	<1	<1	1	<1	1
度 (カオリン)	下層	<1	1	<1	~	1	2	1	1	1
рΗ	上層	8. 2	8. 1	8. 1	~	8. 2	8. 2	8. 2	8.0	_
	下層	8. 2	7. 9	7. 9	~	8. 2	8.0	8.0	7. 9	_
CC (mg/I)	上層	1	2	1	~	2	1	1	1	1
SS(mg/L)	下層	1	1	1	\sim	1	2	2	1	2
VSS(mg/L)	上層	1	1	1	~	1	1	1	1	1
voo (IIIg/L)	下層	1	<1	<1	~	1	1	1	1	1
備	考									

測定層は上層:海面下1m、下層:海底上2m

平均値は、下限値未満 (<1) は「1」として計算した

表 4-1-2-2 水質調査結果(補助監視地点)

調査年月日 : 平成26年8月12日

項目\地。	点番号	S-1	S-2	最小値	~	最大値	B - 1	B - 2	B - 3	平均値
調査時	刻	09 : 55	09 : 40		_		09 : 00	09 : 10	09 : 25	_
水温	上層	26. 0	26. 1	26. 0	~	26. 1	26. 1	25. 7	26. 0	25. 9
(\mathcal{C})	下層	25. 4	25. 3	25. 3	~	25. 4	25. 2	25. 1	25. 3	25. 2
塩分	上層	28. 1	26. 0	26. 0	~	28.1	27. 4	28.6	28. 4	28. 1
	下層	31. 4	31. 3	31. 3	~	31.4	31.8	31. 7	31. 1	31.5
濁度	上層	1	1	1	~	1	1	1	1	1
度 (カオリン)	下層	2	2	2	\sim	2	2	3	2	2
рН	上層	8. 0	7. 9	7. 9	~	8.0	8.0	8.0	7. 9	_
	下層	7. 9	7. 9	7. 9	~	7. 9	7. 9	7. 9	7. 9	_
備	考									

測定層は上層:海面下1m、下層:海底上2m

表 4-1-2-3 水質調査結果(補助監視地点)

調査年月日 : 平成26年8月20日

項目\地	点番号	S-1	S - 2	最小値	~	最大値	B - 1	B - 2	B - 3	平均値
調査時	刻	09 : 33	09 : 25		_		09 : 00	09 : 08	09 : 17	_
水温	上層	29. 6	29. 0	29. 0	~	29.6	29. 3	29. 2	29. 4	29. 3
(℃)	下層	26. 5	26. 5	26. 5	~	26. 5	25. 7	25. 7	26. 9	26. 1
塩分	上層	21. 3	25. 7	21. 3	~	25. 7	25. 2	23. 2	25. 9	24.8
	下層	30. 3	30. 1	30. 1	~	30.3	30.6	30. 5	30. 1	30. 4
濁度	上層	2	1	1	~	2	2	1	1	1
度 (カオリン)	下層	3	1	1	~	3	3	3	2	3
рН	上層	8. 7	8. 4	8. 4	~	8. 7	8. 5	8.6	8.4	_
	下層	7. 9	7. 9	7. 9	~	7. 9	7.8	7. 9	8.0	_
備	考									

測定層は上層:海面下1m、下層:海底上2m

表 4-1-2-4 水質調査結果(補助監視地点)

調査年月日 : 平成26年8月27日

項目\地	点番号	S-1	S - 2	最小値	~	最大値	B - 1	B - 2	B - 3	平均値
調査時	刻	09 : 55	09 : 40		_		09 : 00	09 : 15	09 : 24	_
水温	上層	28. 6	28. 6	28.6	~	28.6	28. 4	28. 4	28.8	28. 5
(℃)	下層	25. 9	26. 2	25. 9	~	26. 2	25. 7	25.8	26. 6	26. 0
塩分	上層	24. 3	24. 5	24. 3	~	24. 5	25. 1	24. 4	22.2	23.9
	下層	30. 6	30. 4	30. 4	~	30.6	30.8	30.8	30.0	30. 5
濁度	上層	2	1	1	~	2	2	1	1	1
度 (カオリン)	下層	2	1	1	~	2	3	3	2	3
рН	上層	8. 3	8. 2	8. 2	~	8. 3	8. 2	8.3	8.4	_
	下層	7. 7	7. 8	7. 7	~	7. 8	7. 7	7. 7	7. 7	_
備	考									

測定層は上層:海面下1m、下層:海底上2m

表4-1-2-5 補助監視野帳

平成26年8月5日

調査均	h 占	S – 1	S - 2	B - 1	B - 2	A 成 26年8月5日 B - 3	
調査開始		10 : 55	11 : 33	10 : 42	10 : 29	11 : 19	
天気・	雲量	晴 · 6	晴・6	晴・6	晴 · 6	晴・6	
風向・	風力	SW • 2	SW • 3	SW • 3	SW • 2	SW • 3	
風浪階		2	2	3	3	2	
気温 (\mathbb{C})	30. 6	31. 0	30. 6	30. 5	30. 9	
水深(m)	11. 2	10. 5	13. 0	13. 2	8. 6	
透明度	(m)	4. 3	5. 4	6.8	6. 1	6. 0	
		grayish	dark	dark	dark	dark	
水色	4	olive	yellowish	yellowish	yellowish	yellowish	
		green	green	green	green	green	
(マンセ	ル値)	5GY3/3	10GY3/4	10GY3/4	10GY3/4	10GY3/4	
赤潮の	状態	無	無	無	無	無	
油膜の有無		無	無	無	無	無	
-k.>E (%C)	上層	26. 3	26. 7	26. 1	26. 2	26. 3	
水温(℃)	下層	25. 9	25. 3	25. 0	25. 3	25. 3	
	上層	8. 2	8. 1	8. 2	8. 2	8. 0	
рН	下層	8. 2	7. 9	8. 0	8. 0	7. 9	
H= //	上層	31. 7	31. 1	31. 8	31. 7	31. 4	
塩分	下層	31. 9	32. 0	32. 1	32. 0	32. 0	
DO	上層	7.5	6. 1	7. 0	6.8	5. 7	
(mg/L)	下層	6.6	2.8	3. 7	2. 9	3. 8	
DO飽和度	上層	112	91	104	102	85	
(%)	下層	99	42	54	43	56	
濁度	上層	<1	<1	<1	1	<1	
度 (カオリン)	下層	<1	1	2	1	1	
濁度	上層	0	0	ハ゛ックク゛ラウン	ト (BG) 値=	<1	
(BGとの差)	 下層	0	0	ハ゛ックク゛ラウン		1	
	1	l	1	l		1	

測定層は上層:海面下1m、下層:海底上2m 濁度(バックグラウンド値との差)は、「各点各層濁度」-「バックグラウンドの濁度最小値」とし、

下限値未満 (<1)は「1」として計算した。 濁度の監視基準(バックグラウンド値との差)は、上層が3度・カオリン未満、下層が11度・カオリン未満

表4-1-2-6 補助監視野帳

平成26年8月12日

調査地	1点	S – 1	S - 2	B - 1	B - 2	成26年8月12日 B-3	
調査開始	治時刻	09 : 55	09 : 40	09 : 00	09 : 10	09 : 25	
天気・	雲量	曇・ 10	曇 • 10	曇・ 10	曇 • 10	曇 • 10	
風向・)	風力	NE • 1	NE • 1	NE • 1	NE • 1	NE • 1	
風浪階		1	1	1	1	1	
気温 (C)	26. 6	26. 2	25. 5	25. 6	25. 9	
水深(1	m)	11. 5	10. 7	13.8	14. 0	9. 1	
透明度	(m)	4. 5	4. 1	4.8	4. 3	3.8	
		dark	dark	dark	dark	dark	
水色	<u>L</u>	yellowish	yellowish	yellowish	yellowish	yellowish	
		green	green	green	green	green	
(マンセ,	ル値)	10GY3/4	10GY3/4	10GY3/4	10GY3/4	10GY3/4	
赤潮の	状態	無	無	無	無	無	
油膜の有無		無	無	無	無	無	
水温(℃)	上層	26. 0	26. 1	26. 1	25. 7	26. 0	
水価(し)	下層	25. 4	25. 3	25. 2	25. 1	25. 3	
11	上層	8. 0	7. 9	8. 0	8. 0	7. 9	
рΗ	下層	7. 9	7. 9	7. 9	7. 9	7. 9	
塩分	上層	28. 1	26. 0	27. 4	28. 6	28. 4	
塩分	下層	31. 4	31. 3	31. 8	31. 7	31. 1	
DO	上層	5. 7	5. 6	6. 2	5. 8	5. 6	
(mg/L)	下層	3. 9	4.0	4.3	4. 6	4. 1	
DO飽和度	上層	83	81	90	84	82	
(%)	下層	58	59	63	67	61	
濁度	上層	1	1	1	1	1	
度 (カオリン)	下層	2	2	2	3	2	
濁度	上層	0	0	ハ゛ックク゛ラウン	ト゛(BG)値=	1	
(BGとの差) 下層		0	0	ハ゛ックク゛ラウント゛(BG)値=		2	

測定層は上層:海面下1m、下層:海底上2m 濁度(バックグラウンド値との差)は、「各点各層濁度」-「バックグラウンドの濁度最小値」とし、 下限値未満(<1)は「1」として計算した。 濁度の監視基準(バックグラウンド値との差)は、上層が3度・カオリン未満、下層が11度・カオリン未満

表 4-1-2-7 補助監視野帳

平成26年8月20日

調査開始時刻			1				成26年8月20日 	
大気・雲量	調査均	也点 ————————————————————————————————————	S – 1	S-2	B – 1	B - 2	B - 3	
風向・風力 WSW ・ 2	調査開始	台時刻	09 : 33	09 : 25	09 : 00	09 : 08	09 : 17	
風浪階級 2 2 2 2 2 2 2 2 2 2 2 31.0 31.0 30.8 30.9 31.0 31.0 30.8 30.9 31.0 31.0 30.8 30.9 31.0 31.0 30.8 30.9 31.0 31.0 30.8 30.9 31.0 31.0 30.8 30.9 31.0 31.0 30.8 30.9 31.0 31.0 30.8 30.9 31.0 31.0 30.8 30.9 31.0 31.0 30.8 30.9 31.0	天気・	雲量	晴 · 7	晴・ 7	晴・6	晴・ 7	晴・ 7	
気温(で) 31.1 31.0 30.8 30.9 31.0 水澤(m) 10.7 10.3 12.9 13.1 8.1 透明度(m) 2.9 3.1 3.0 3.2 3.2 水色 grayish gray	風向・	風力	WSW · 2	WSW · 2	WSW • 2	WSW • 2	WSW • 2	
水深(m)	風浪階	 指級	2	2	2	2	2	
透明度 (m) 2.9 3.1 3.0 3.2 3.2 水色 grayish grayish olive olive grayish olive green	気温 (C)	31. 1	31. 0	30.8	30. 9	31.0	
水色 の1ive の1ive の1ive の1ive の1ive の1ive green g	水深(m)	10. 7	10. 3	12. 9	13. 1	8. 1	
水色 olive green green green green (マンセル値) 56Y3/3 57 25.7 25.7	透明度	(m)	2.9	3. 1	3.0	3. 2	3. 2	
green			grayish	grayish	grayish	grayish	grayish	
(マンセル値) 5GY3/3 5GY3/3 5GY3/3 5GY3/3 5GY3/3 5GY3/3	水色	į	olive	olive	olive	olive	olive	
赤潮の状態 弱 弱 弱 弱 油膜の有無 無 無 無 無 無 水温(℃) 上層 29.6 29.0 29.3 29.2 29.4 水温(℃) 下層 26.5 26.5 25.7 25.7 26.9 pH 上層 8.7 8.4 8.5 8.6 8.4 下層 7.9 7.9 7.8 7.9 8.0 塩分 上層 21.3 25.7 25.2 23.2 25.9 下層 30.3 30.1 30.6 30.5 30.1 DO 上層 8.9 7.7 8.4 8.6 8.5 (mg/L) 下層 4.3 5.0 3.7 4.1 5.8 DO飽和度 上層 133 117 128 129 129 (%) 下層 65 74 55 60 87 濁度 上層 2 1 2 1 1 度(カリン) 下層 3 1 3 3 2 濁度 上層 +1 0 ハ*ッククラウント* (BG)値= 1			green	green	green	green	green	
油膜の有無 無 無 無 無 無 無 無 無 無 無 無 未 に	(マンセ	ル値)	5GY3/3	5GY3/3	5GY3/3	5GY3/3	5GY3/3	
水温(C) 上層 29.6 29.0 29.3 29.2 29.4 下層 26.5 26.5 25.7 25.7 26.9 日 上層 8.7 8.4 8.5 8.6 8.4 下層 7.9 7.9 7.8 7.9 8.0 塩分 上層 21.3 25.7 25.2 23.2 25.9 下層 30.3 30.1 30.6 30.5 30.1 DO 上層 8.9 7.7 8.4 8.6 8.5 (mg/L) 下層 4.3 5.0 3.7 4.1 5.8 DO飽和度 上層 133 117 128 129 129 (%) 下層 65 74 55 60 87 濁度 上層 2 1 2 1 1 度(カオリン) 下層 3 1 3 3 2 濁度 上層 +1 0 パックグラウンド(BG)値= 1	赤潮の	状態	弱	弱	弱	弱	弱	
 水温(℃) 下層 26.5 26.5 25.7 25.7 26.9 上層 8.7 8.4 8.5 8.6 8.4 下層 7.9 7.9 7.8 7.9 8.0 上層 21.3 25.7 25.2 23.2 25.9 下層 30.3 30.1 30.6 30.5 30.1 DO 上層 8.9 7.7 8.4 8.6 8.5 (mg/L) 下層 4.3 5.0 3.7 4.1 5.8 DO飽和度 上層 133 117 128 129 129 (%) 下層 65 74 55 60 87 満度 上層 2 1 1 度(ウォオリン) 下層 3 1 3 3 2 満度 上層 +1 0 パッククッラウンド(BG)値= 1 	油膜の有無		無	無	無	無	無	
下層 26.5 26.5 25.7 25.7 26.9 pH 上層 8.7 8.4 8.5 8.6 8.4 下層 7.9 7.9 7.8 7.9 8.0 塩分 上層 21.3 25.7 25.2 23.2 25.9 下層 30.3 30.1 30.6 30.5 30.1 DO 上層 8.9 7.7 8.4 8.6 8.5 (mg/L) 下層 4.3 5.0 3.7 4.1 5.8 DO飽和度 上層 133 117 128 129 129 (%) 下層 65 74 55 60 87 濁度 上層 2 1 2 1 1 度 (カオオリン) 下層 3 1 3 3 2 濁度 上層 +1 0 バッククッラウンド(BG)値= 1	→v3E (°C)	上層	29. 6	29. 0	29. 3	29. 2	29. 4	
p H 下層 7.9 7.9 7.8 7.9 8.0 塩分 上層 21.3 25.7 25.2 23.2 25.9 下層 30.3 30.1 30.6 30.5 30.1 DO 上層 8.9 7.7 8.4 8.6 8.5 (mg/L) 下層 4.3 5.0 3.7 4.1 5.8 DO飽和度 上層 133 117 128 129 129 (%) 下層 65 74 55 60 87 濁度 上層 2 1 2 1 1 度(カオサリン) 下層 3 1 3 3 2 濁度 上層 +1 0 ^^ ックグラウンド(BG)値= 1	/八価(し)	下層	26. 5	26. 5	25. 7	25. 7	26. 9	
下層 7.9 7.9 7.8 7.9 8.0 塩 分 下層 21.3 25.7 25.2 23.2 25.9 下層 30.3 30.1 30.6 30.5 30.1 DO 上層 8.9 7.7 8.4 8.6 8.5 (mg/L) 下層 4.3 5.0 3.7 4.1 5.8 DO飽和度 上層 133 117 128 129 129 (%) 下層 65 74 55 60 87 濁度 上層 2 1 2 1 1	» II	上層	8. 7	8. 4	8. 5	8.6	8. 4	
塩 分 下層 30.3 30.1 30.6 30.5 30.1 DO 上層 8.9 7.7 8.4 8.6 8.5 (mg/L) 下層 4.3 5.0 3.7 4.1 5.8 DO飽和度 上層 133 117 128 129 129 (%) 下層 65 74 55 60 87 3	рп	下層	7. 9	7. 9	7.8	7. 9	8. 0	
下層 30.3 30.1 30.6 30.5 30.1 DO 上層 8.9 7.7 8.4 8.6 8.5 (mg/L) 下層 4.3 5.0 3.7 4.1 5.8 DO飽和度 上層 133 117 128 129 129 (%) 下層 65 74 55 60 87 濁度 上層 2 1 2 1 1 度(カオリン) 下層 3 1 3 3 2 濁度 上層 +1 0 バックグラウンド(BG)値= 1	始	上層	21. 3	25. 7	25. 2	23. 2	25. 9	
(mg/L) 下層 4.3 5.0 3.7 4.1 5.8 DO飽和度 上層 133 117 128 129 129 (%) 下層 65 74 55 60 87 濁度 上層 2 1 2 1 1 度(カオリン) 下層 3 1 3 3 2 濁度 上層 +1 0 バックグラウンド(BG)値= 1	<u></u> 鱼 刀	下層	30. 3	30. 1	30. 6	30. 5	30. 1	
DO飽和度 上層 133 117 128 129 129 (%) 下層 65 74 55 60 87 濁度 上層 2 1 2 1 1 度(カオリン) 下層 3 1 3 3 2 濁度 上層 +1 0 バッククグラウンド(BG)値= 1	DO	上層	8. 9	7. 7	8.4	8.6	8. 5	
(%) 下層 65 74 55 60 87 濁度 上層 2 1 2 1 1 度(カオリン) 下層 3 1 3 3 2 濁度 上層 +1 0 バッククグラウンド(BG)値= 1	(mg/L)	下層	4. 3	5. 0	3. 7	4. 1	5.8	
濁度 上層 2 1 2 1 1 度(カオリン) 下層 3 1 3 3 2 濁度 上層 +1 0 バックグラウンド(BG)値= 1	DO飽和度	上層	133	117	128	129	129	
度 (カオリン) 下層 3 1 3 3 2 濁度 上層 +1 0 バックグラウンド(BG)値= 1	(%)	下層	65	74	55	60	87	
濁度 上層 +1 0 バックグラウンド(BG)値= 1	濁度	濁度 上層		1	2	1	1	
	度 (カオリン)	度 (カオリン) 下層 3		1	3	3	2	
(BGとの差) 下層 +1 -1 バックグラウンド(BG)値= 2	濁度	上層	+1	0	ハ゛ックク゛ラウン	ト (BG) 値=	1	
	(BGとの差)	下層	+1	-1	ハ゛ックク゛ラウン	ト゛(BG)値=	2	

測定層は上層:海面下1m、下層:海底上2m

濁度(バックグラウンド値との差)は、「各点各層濁度」-「バックグラウンドの濁度最小値」とし、

下限値未満 (<1)は「1」として計算した。 濁度の監視基準(バックグラウンド値との差)は、上層が3度・カオリン未満、下層が11度・カオリン未満

表4-1-2-8 補助監視野帳

平成26年8月27日

調査地	1点	S-1	S-2	B - 1	B-2	成26年8月27日 B-3	
調査開始	時刻	09 : 55	09 : 40	09 : 00	09 : 15	09 : 24	
天気・	雲量	晴 • 8	晴 • 7	晴 • 6	晴 • 7	晴 · 7	
風向・)	風力	N • 2	NNE • 2	NNE • 2	NNE · 2	NNE • 2	
風浪階		2	2	2	2	2	
気温(C)	29. 9	29. 9	29. 6	29. 7	29.8	
水深(m)	11. 3	10. 5	13. 5	13.8	8.8	
透明度	(m)	3. 5	3. 3	3. 2	3. 2	3.8	
		grayish	grayish	grayish	grayish	grayish	
水色	Ĺ	olive	olive	olive	olive	olive	
		green	green	green	green	green	
(マンセ,	ル値)	5GY3/3	5GY3/3	5GY3/3	5GY3/3	5GY3/3	
赤潮の	状態	弱	弱	弱	弱	弱	
油膜の有無		無	無	無	無	無	
水温(℃)	上層	28. 6	28. 6	28. 4	28. 4	28.8	
水価(じ)	下層	25. 9	26. 2	25. 7	25.8	26. 6	
рН	上層	8.3	8. 2	8. 2	8. 3	8. 4	
p II	下層	7.7	7.8	7. 7	7. 7	7. 7	
塩分	上層	24. 3	24. 5	25. 1	24. 4	22. 2	
鱼 刀	下層	30. 6	30. 4	30.8	30.8	30.0	
DO	上層	6.8	6.8	6.6	7. 1	7. 7	
(mg/L)	下層	2.0	3.0	2.9	2. 7	2. 5	
DO飽和度	上層	101	101	98	105	114	
(%)	下層	30	45	43	41	37	
濁度	濁度 上層		1	2	1	1	
度 (カオリン)	下層	2	1	3	3	2	
濁度	上層	+1	0	バックグラウンド(BG)値=		1	
(BGとの差) 下層		0	-1	ハ゛ックク゛ラウント゛(BG)値=		2	

測定層は上層:海面下1m、下層:海底上2m 濁度(バックグラウンド値との差)は、「各点各層濁度」-「バックグラウンドの濁度最小値」とし、 下限値未満(<1)は「1」として計算した。 **濁度の監視基準(バックグラウンド値との差)は、上層が3度・カオリン未満、下層が11度・カオリン未満**

表4-1-2-9 補助監視調査結果の環境基準との比較

調査日	項目\ナ	也点番号	S-1	S-2	B-1	B-2	B-3
		上層	0	0	0	0	0
8月5日	На	下層	0	0	0	0	0
0月3日	DO	上層	0	0	0	0	0
	DO	下層	0	0	0	0	0
	На	上層	0	0	0	0	0
8月12日	pn	下層	0	0	0	0	0
0月12日	8Д 12 Д DO	上層	0	0	0	0	0
		下層	0	0	0	0	0
	На	上層	×	×	×	×	×
8月20日	pii	下層	0	0	0	0	0
0万20日	DO	上層	0	0	0	0	0
	DO	下層	0	0	0	0	0
	На	上層	0	0	0	0	×
8月27日	рп	下層	0	0	0	0	0
	DO	上層	0	0	0	0	0
	υ	下層	0	0	0	0	0

備考)○:基準内 ×基準外

注)環境基準値は「生活環境の保全に関する環境基準」による。当調査海域は C 類型、IV類型に該当。

pH: 7.0 以上 8.3 以下 DO: 2 mg/L 以上

表 4-1-2-10 補助監視点の濁度(バックグラウンド値との差)

調査日	項目\地点番号	S-1	評価	S-2	評価	バックグラウンド(BG)値
8月5日	上層	0	0	0	0	<1
8月9日	下層	0	0	0	0	1
0 10 1	上層	0	0	0	0	1
8月12日	下層	0	0	0	0	2
0 11 00 11	上層	+1	0	0	0	1
8月20日	下層	+1	0	-1	0	2
о Н 97 П	上層	+1	0	0	0	1
8月27日 -	下層	0	0	-1	0	2

備考)○:基準内 ×基準外

注)濁度(BG との差)の計算は、「各点各層濁度」 — 「バックグラウンドの濁度最小値」とし、下限値未満(< 1)は「1」として計算した。

4-2 底質調査結果

底質調査結果のうち、含有試験の結果を表4-2-1、溶出試験の結果を表4-2-2に示す。

粒度組成の結果は、St. 3 は砂分が高く、St. 1、St. 2、St. 4 はシルト分および粘土分が高い土質であった。

その他の項目では、特に高い値はみられなかった。

水底土砂に係る判定基準項目の分析結果は、St. 1、St. 2、St. 4のフッ化物以外の項目において報告下限値未満であり、フッ化物を含めて水底土砂の判定基準未満であった。

表 4-2-1 底質(含有試験)調査結果

調査年月日 : 平成26年8月6日

	- 加 <u>工</u> 中月口 · 十成20中8月								
	項目\地点番号	St. 1	St. 2	St. 3	St. 4	最小値	\sim	最大値	平均值
	調査時刻	9:08	10:15	12:15	11:10		_		_
	粗礫分(19~75mm)	0.0	0.0	0.0	0.0	0.0	~	0.0	0.0
粒	中礫分 (4.75~19mm)	0. 1	1. 7	10. 2	0.0	0.0	~	10.2	3.0
度	細礫分(2.00~4.75mm)	1. 1	0.5	3. 9	0.2	0.2	~	3.9	1.4
組成	粗砂分(0.850~2.00mm)	1. 5	0. 9	2. 0	0.2	0.2	~	2.0	1.2
	中砂分(0.250~0.850mm)	8. 2	5. 4	38. 4	1.8	1.8	\sim	38. 4	13. 5
%	細砂分(0.075~0.250mm)	10. 4	5. 5	15. 5	4. 5	4. 5	~	15. 5	9.0
	シルト分 (0,005~0.075mm)	25. 7	17. 7	19. 5	29.6	17.7	~	29.6	23. 1
	粘土分 (0.005mm以下)	53. 0	68. 3	10. 5	63. 7	10.5	~	68.3	48. 9
COD	(mg/g 乾泥)	13	21	3. 0	28	3. 0	\sim	28.0	16
全硫	化物 (mg/g 乾泥)	0.32	0.50	0.06	1.2	0.06	\sim	1. 20	0.52
全窒	·素 (mg/g 乾泥)	1.4	1. 9	0. 27	2.5	0. 27	\sim	2.5	1.5
全リ	ン (mg/g 乾泥)	0. 27	0.32	0. 12	0.40	0. 12	\sim	0.40	0. 28
強熱	減量 (%)	5. 2	5.8	1. 7	11.1	1.7	\sim	11. 1	6.0
含水	率 (%)	52. 9	68.0	21. 1	72.1	21.1	\sim	72. 1	53. 5
рН		7. 9	7.8	8. 0	7.9	7.8	\sim	8.0	7. 9
総水	銀(mg/kg)	0. 17	0.11	0.03	0.10	0.03	\sim	0.17	0.10
PCB ((mg/kg)	<0.01	<0.01	<0.01	<0.01	<0.01	\sim	<0.01	<0.01
有機	塩素化合物(mg/kg)	<4	<4	<4	<4	<4	\sim	<4	<4
ノル	ノルマルヘキサン抽出物質(mg/g)		<0.5	<0.5	<0.5	<0.5	\sim	<0.5	<0.5
酸化	還元電位 (mV)	-189	-148	-58	-163	-189	\sim	-58	-140

注1)酸化還元電位の値は、標準水素電極の値に換算したものである。

表4-2-2 底質(溶出試験)調査結果

調査年月日 : 平成26年8月6日

項目\地点番号	単位	St. 1	St. 2	St. 3	St. 4
アルキル水銀化合物	mg/L	<0.0005	<0.0005	<0.0005	<0.0005
水銀又はその化合物	mg/L	<0.0005	<0.0005	<0.0005	<0.0005
カドミウム又はその化合物	mg/L	<0.01	<0.01	<0.01	<0.01
鉛又はその化合物	mg/L	<0.01	<0.01	<0.01	<0.01
有機りん化合物	mg/L	<0.1	<0.1	<0.1	<0.1
六価クロム化合物	mg/L	<0.02	<0.02	<0.02	<0.02
砒素又はその化合物	mg/L	<0.01	<0.01	<0.01	<0.01
シアン化合物	mg/L	<0.1	<0.1	<0.1	<0.1
PCB	mg/L	<0.001	<0.001	<0.001	<0.001
銅又はその化合物	mg/L	<0.05	<0.05	<0.05	<0.05
亜鉛又はその化合物	mg/L	<0.1	<0.1	<0.1	<0.1
フッ化物	mg/L	0.4	0.4	<0.1	0.5
トリクロロエチレン	mg/L	<0.01	<0.01	<0.01	<0.01
テトラクロロエチレン	mg/L	<0.01	<0.01	<0.01	<0.01
ベリリウム又はその化合物	mg/L	<0.05	<0.05	<0.05	<0.05
クロム又はその化合物	mg/L	<0.05	<0.05	<0.05	<0.05
ニッケル又はその化合物	mg/L	<0.1	<0.1	<0.1	<0.1
バナジウム又はその化合物	mg/L	<0.1	<0.1	<0.1	<0.1
ジクロロメタン	mg/L	<0.02	<0.02	<0.02	<0.02
四塩化炭素	mg/L	<0.002	<0.002	<0.002	<0.002
1,2-ジクロロエタン	mg/L	<0.004	<0.004	<0.004	<0.004
1, 1-ジクロロエチレン	mg/L	<0.02	<0.02	<0.02	<0.02
シス-1, 2-ジクロロエチレン	mg/L	<0.04	<0.04	<0.04	<0.04
1, 1, 1-トリクロロエタン	mg/L	<0.01	<0.01	<0.01	<0.01
1,1,2-トリクロロエタン	mg/L	<0.006	<0.006	<0.006	<0.006
1, 3-ジクロロプロペン	mg/L	<0.002	<0.002	<0.002	<0.002
チウラム	mg/L	<0.006	<0.006	<0.006	<0.006
シマジン	mg/L	<0.003	<0.003	<0.003	<0.003
チオベンカルブ	mg/L	<0.02	<0.02	<0.02	<0.02
ベンゼン	mg/L	<0.01	<0.01	<0.01	<0.01
セレン又はその化合物	mg/L	<0.01	<0.01	<0.01	<0.01

表 4-2-3 底質調査野帳

調査年月日: 平成26年8月6日

調査点	1	2	3	4	
	1		3	4	
調査開始時刻	9:08	10:15	12:15	11:10	
天気・雲量	雲・9	晴 • 7	晴 • 7	晴 • 8	
風向・風力	SW • 3	W • 1	WSW • 3	WSW • 2	
風浪階級	3	1	2	1	
気温 (℃)	温 (℃) 28.5 29.2		28.8	29. 2	
水深 (m)	12.5	13. 9	8. 7	12. 5	
臭 気	無	中硫化水素臭	無	強硫化水素臭	
泥温 (℃)	(°C) 24.3 22.4		25. 5	22. 4	
性 状	砂混じりシルト	砂混じりシルト	礫混じり砂	シルト	
	olive	olive	olive	olive	
泥 色	black	black	black	black	
化 巴					
	7.5Y3/2	10Y3/1	5Y3/1	5GY2/1	
夾雑物	物 貝殼片 貝殼片		貝殼片	貝殼片	
ORP (mV)	-189 -148		-58	-163	
特記事項					

4-3 水生生物調査結果

4-3-1 植物プランクトン調査結果

植物プランクトン調査結果の概要を表 4-3-1-1、出現種一覧表を表 4-3-1-2、出現種ごとの細胞数を表 4-3-1-3、水平分布を図 4-3-1に示す。

上層の種類数は $16\sim22$ 種類の範囲にあり、St. 2、4で最も多かった。総種類数は 31 種類であった。下層の種類数は $15\sim26$ 種類の範囲にあり、St. 4 で最も多かった。総種類数は 32 種類であった。

上層の細胞数は 400,800~3,562,800 細胞/L の範囲にあり、St. 4 で最も多かった。全地点の平均細胞数は 1,387,300 細胞/L であった。下層の細胞数は 63,200~351,600 細胞/L の範囲にあり、St. 2 で最も多かった。全地点の平均細胞数は 209,300 細胞/L であった。

上層の沈殿量は<0.05~0.05mL/Lの範囲にあった。下層の沈殿量は<0.05 mL/Lであった。 主要種は上層、下層ともに珪藻綱の Thalassiosiraceae (タラシオシラ科)、羽状目、渦鞭毛 藻綱の Gymnodinium mikimotoi (ギムノディニウム ミキモトイ) が多かった。

全地点平均で上層、下層ともに珪藻綱の Thalassiosiraceae (タラシオシラ科) が一番多く、 上層で 43.7%、下層で 23.3%を占めていた。

いずれの主要種も内湾から沿岸域で普通にみられる種類である。

4-3-2 動物プランクトン調査結果

動物プランクトン調査結果の概要を表4-3-2-1、出現種一覧を表4-3-2-2、 出現種ごとの個体数を表4-3-2-3、水平分布を図4-3-2に示す。

種類数は 20~23 種類の範囲にあり、St. 2 で最も多かった。総種類数は 32 種類であった。

個体数は 34,618~44,398 個体/ m^3 の範囲にあり、St. 2 で最も多かった。全地点の平均 個体数は 39,479 個体/ m^3 であった。

沈殿量は $4.8\sim6.8$ mL/m³の範囲にあり、St. 1 で最も多かった。全地点の平均沈殿量は 5.4mL/m³であった。

主要種は各調査点では、節足動物門の Microsetella norvegica (ミクロセテラ /ルヴェジカ)、Oithona davisae (オイトナ ダヴィサエ)、Oithona sp. (オイトナ属)、nauplius of Copepoda (カイアシ目のノープリウス幼生)、Penilia avirostris (ウスカワミジンコ) であり、全地点平均で Microsetella norvegica (ミクロセテラ /ルヴェジカ) が 24.9%を占めていた。

いずれの主要種も内湾から沿岸域で普通にみられる種類である。

4-3-3 底生生物調査結果

底生生物調査結果の概要を表 4-3-3-1、出現種一覧を表 4-3-3-2、個体数 および湿重量をそれぞれ表 4-3-3-3、表 4-3-3-4、水平分布を図 4-3-3に示す。

種類数は $0\sim11$ 種類の範囲にあり、St.3で最も多かった。総種類数は16種類であった。 個体数は $0\sim92$ 個体/0.1m 2 の範囲にあり、St.1で最も多かった。全地点の平均個体数は36 個体/0.1m 2 であった。

湿重量は $0.00\sim1.32$ g/0.1m² の範囲にあり、St. 1 で最も多かった。全地点の平均湿重量は 0.42g/0.1m² であった。

主要種は、環形動物門の Paraprionospio sp. (A型) (パラプリオスピオ属(A型))、触手動物門の Phoronis sp. (フォロニス属)が多く出現し、Paraprionospio sp. (A型)は全体平均個体数の 63.6%、Phoronis sp. が 12.6%を占めた。

Paraprionospio sp. は強内湾性の有機汚染指標種であり、湾奥部の中・富栄養となっている泥底に生息している種である。

主要種は、いずれも内湾から沿岸域で普通にみられる種類である。

4-3-4 魚卵・稚仔魚調査結果

魚卵調査結果の概要を表4-3-4-1、出現種一覧を表4-3-4-2、出現種ごとの個数を表4-3-4-3、水平分布を図4-3-4-1に示す。

また、稚仔魚調査結果の概要を表4-3-4-4、出現種一覧を表4-3-4-5、出現種ごとの個体数を表4-3-4-6、水平分布を図4-3-4-2に示す。

4-3-4-1 魚卵

種類数は6~8種類の範囲にあり、総種類数は10種類であった。

個数は $8,955\sim36,927$ 個/1,000m³の範囲にあり、St. 2 で最も多かった。全地点の平均 個数は 21,824 個/1,000m³であった。

主要種は、各調査点とも Unidentified s.o. egg-4(単脂卵 0.58~0.69mm)であり、全地点の平均個数で 65.5%を占めていた。

種名が判明した卵は、いずれも内湾から沿岸域で普通にみられる種類である。

4-3-4-2 稚仔魚

種類数は11~18種類の範囲にあり、総種類数は23種類であった。

個体数は $93\sim1,039$ 個体/1,000 m^3 の範囲にあり、St. 3 で最も多かった。全地点の平均 個体数は 409 個体/1,000 m^3 であった。

主要種は各調査点ではアミメハギ、カタクチイワシ、ネズッポ科であり、全地点の平均 個体数でカタクチイワシは 55.2%を占めていた。

いずれの主要種も内湾から沿岸域で普通にみられる種類である。

4-3-5 付着生物調査結果

ベルトトランセクト法による付着生物出現種一覧を表4-3-5-1、付着生物(植物)の藻長測定結果を表4-3-5-2、調査測点断面摸式を図4-3-5-1、主な付着生物の鉛直分布を図4-3-5-2に示す。

坪刈り法による付着生物(植物)調査結果の概要を表 4-3-5-3、出現種一覧を表 4-3-5-4、出現種ごとの湿重量を表 4-3-5-5に示す。また、付着生物(動物)調査結果の概要を表 4-3-5-6、出現種一覧を表 4-3-5-7、出現種ごとの個体数および湿重量をそれぞれ表 4-3-5-8、表 4-3-5-9に示す。

4-3-5-1 調査地点概要

調査地点は阪南港阪南2区内にある防波堤に位置する。St. Aはコンクリートケーソンで、海底付近は砂泥底であった。海底付近では、貝の死骸が堆積していた。St. Bは捨て石式傾斜堤で上部は被覆石が積まれている。海底付近では砂泥が堆積していた。

4-3-5-2 ベルトトランセクト法(目視観察)

① 植物

St. Aでは、平均水面付近から水深 1.5m にかけてミルとシオグサ属が生息し、混生していた。

St. Bでは、平均水面付近から水深 1.5m にオキツノリ、ツノマタ属が混生していた。 また、水深 0.5m から水深 6m にかけてマクサが、水深 2m から水深 7m にかけてカバノ リが広範囲に生息し、混生していた。

② 動物

St. Aでは、平均水面付近にアラレタマキビガイ、イワフジツボが分布していた。平均水面付近から水深 8m にかけてイボニシ、カンザシゴカイ科が、平均水面付近から水深 5m にかけて普通海綿綱が、水深 0.5m から水深 3.5m にかけてフサコケムシが広範囲に分布していた。水深 6.5m から水深 8m に泥巣が分布していた。

St. Bでは、平均水面付近から水深 7m にかけてカンザシゴカイ科が広範囲に、水深 1m 以深の広範囲にサンカクフジツボが、水深 3.5m 以深の広範囲にシマメノウフネガイが分布していた。

4-3-5-3 坪刈り法

植物

St. Aの各層の種類数は1~6種類、St. Bの各層の種類数は1~6種類の範囲にあり、St. Aの中層およびSt. Bの中層、下層で最も多かった。総種類数は11種類であった。St. Aの各層の湿重量は 0.02 ~ 0.22g/0.09m²、St. Bの各層の湿重量は 2.39~43.48g/0.09m²の範囲にあり、St. Bの中層で最も多かった。全地点の平均湿重量は

 $10.24g/0.09m^2$ であった。

湿重量の主要種は St. Aの上層、St. Bの上層においてナガレクダモ属、St. Aの中層ではシオグサ属、イトグサ属、イギス属、St. Aの下層ではイギス属、St. Bの中層においてオキツノリ、ムカデノリ、St. Bの下層ではマクサであり、全地点の主要種は、オキツノリ、ムカデノリ、マクサであった。このうちオキツノリが平均湿重量の34.7%を占めていた

主要種は、いずれも内湾から沿岸域で普通にみられる種類である。

② 動物

St. Aの各層の種類数は $16\sim54$ 種類、St. Bの各層の種類数は $7\sim41$ 種類の範囲にあり、St. Aの中層で最も多かった。総種類数は 98 種類であった。

St. Aの各層の個体数は $83\sim5$, 986 個体/ $0.09m^2$ 、St. Bの各層の個体数は $16\sim401$ 個体/ $0.09m^2$ の範囲にあり、St. Aの中層で最も多かった。全地点の平均個体数は 1,745 個体/ $0.09m^2$ であった。

St. Aの各層の湿重量は 23. 36~1, 108. $26g/0.09m^2$ 、St. Bの各層の湿重量は 0.08~ 38. $61g/0.09m^2$ の範囲にあり、St. Aの中層で最も多かった。全地点の平均湿重量は 359. $26g/0.09m^2$ であった。

個体数の主要種は、St. Aの上層において節足動物門の Chthamalus challengeri(イワフジッボ)が、St. Aの中層、下層において環形動物門の Dodecaceria sp. (ドデカケリア属)が、St. Bの上層において節足動物門の Chironomidae (ユスリカ科)が、St. Bの中層において環形動物門の Hydroides elegans (カサネカンサ゛シュ゛カイ)、St. Bの下層において環形動物門の Hydroides ezoensis (エリ゛カサネカンサ゛シ)が多く出現し、環形動物門の Dodecaceria sp. (ドデカケリア属)、軟体動物門の Mytilus edulis (ムラサキイガイ)が全地点平均個体数のそれぞれ 47.3%、19.4%を占めていた。

湿重量の主要種は、St. Aの上層において軟体動物門の Cellana nigrolineata (マツバガイ)が、St. Aの中層、下層において軟体動物門の Mytilus edulis (ムラサキイガイ)が、St. Bの上層において軟体動物門の Patelloida pygmaea (ヒメコザラガイ)が、St. Bの中層、下層において軟体動物門の Omphalius rusticus (コシダカガンガラ)が多く出現し、軟体動物門の Mytilus edulis (ムラサキイガイ)が全地点平均個体数の 93.8%を占めていた。

主要種は、いずれも内湾から沿岸域で普通にみられる種類である。

4-3-6 漁獲対象動植物調査結果

刺し網調査結果の概要を表 4-3-6-1、主要種を表 4-3-6-2、種類ごとの個体数および湿重量を表 4-3-6-3に示す。また、底引網調査結果の概要を表 4-3-6-6-66 に示す。

4-3-6-1 刺し網

種類数は魚類が8種類、甲殻類が2種類であり、総種類数は10種類であった。

個体数は1網当たり、魚類が60個体、甲殻類が12個体であり、総個体数は72個体であった。

湿重量は 1 網当たり、魚類が 10,636.5g、甲殻類が 1,310.4g であり、総湿重量は 11,946.9g であった。

個体数の主要種のうちで魚類では *Sillago japonica* (シロギス)、甲殻類では *Charybdis japonica* (イシガニ) が最も多かった。

湿重量の主要種のうち魚類では、Mugil cephalus (ボラ)、甲殻類では Portunus trituberculatus (ガザミ) が最も多かった。

いずれの主要種も内湾から沿岸域で普通にみられる種類である。

4-3-6-2 底引網

種類数は魚類が4種類、甲殼類が1種類であり、総種類数は5種類であった。

個体数は1網当たり、魚類が4個体、甲殼類が1個体であり、総個体数は5個体であった。

湿重量は1網当たり、魚類が2,593.7g、甲殻類が16.0gであり、総湿重量は2,609.7gであった。

個体数の主要種のうち魚類では、 $Dasyatis\ akajei\ (アカエイ)$ 、 $Sillago\ japonica\ (シロギス)$ 、 $Cryptocentrus\ filifer\ (イトヒキハゼ)$ 、 $Stephanolepis\ cirrhifer\ (カワハギ)$ 、甲 殻類では $Charybdis\ japonica\ (イシガニ)$ であった。

湿重量の主要種のうちで魚類では *Dasyatis akajei* (アカエイ)、甲殻類では *Charybdis japonica* (イシガニ) が最も多かった。

いずれの主要種も内湾から沿岸域で普通にみられる種類である。

表 4-3-1-1 (1) 植物プランクトン調査結果概要(上層) [平成 26 年度夏季分]

調查年月日:平成26年 8月 5日

г				T	T	T	T	<u>調査年月日:平成26年 8月 5日</u>
	項目		調査点	1	2	3	4	平均 (最小 ~ 最大)
ŀ	項目、							(取小 ~ 取八)
	種	類	数	16	22	20	22	$\begin{pmatrix} 31 \\ 16 \sim 22 \end{pmatrix}$
-	細	胞	数	400, 800	784, 000	801,600	3, 562, 800	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	沈	殿 (mL)	量	<0.05	0.05	<0.05	<0.05	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ľ				キ゛ムノテ゛ィニウム ミキモトイ	羽状目	キ゛ムノテ゛ィニウム ミキモトイ	タラシオシラ科	タラシオシラ科
				208, 000 (51. 9)	271, 200 (34. 6)	436, 800 (54. 5)	2, 030, 400 (57. 0)	606, 600 (43. 7)
				羽状目	タラシオシラ科	羽状目	羽状目	羽状目
				70, 400 (17. 6)	256, 800 (32. 8)	187, 200 (23. 4)	1, 137, 600 (31. 9)	416, 600 (30. 0)
	主	要	種			タラシオシラ科		キ゛ムノテ゛ィニウム ミキモトイ
	細	胞	数			100, 800 (12. 6)		222, 800 (16. 1)
	(カッコ	内は組	.成比:%)					

- 注:1.種類数の平均は総種類数を示す。
 - 2. 主要種は各調査点での上位5種(ただし組成比10%以上のもの)を示す。
 - 3. 細胞数、沈殿量の単位は、1L当たりで示す。

表 4-2-1-1 (2) 植物プランクトン調査結果概要(下層) [平成 26 年度夏季分]

調查年月日:平成26年 8月 5日

					ı	ı	調査年月日:平成26年 8月 5日
i =	誹	看查点	1	2	3	4	平均 (最小 ~ 最大)
l II							(取八)
重	類	数	15	20	17	26	32
							(15 ~ 26)
細	胞	数	63, 200	351, 600	258, 400	164, 000	209, 300
							$(63,200 \sim 351,600)$
尤	殿 mL)	量	<0.05	<0.05	<0.05	<0.05	<0.05
(.	,11112/						$($ <0.05 \sim <0.05 $)$
			羽状目	タラシオシラ科	キ゛ムノテ゛ィニウム ミキモトイ	タラシオシラ科	タラシオシラ科
			13, 600 (21. 5)	104, 000 (29. 6)	148, 800 (57. 6)	62, 400 (38. 0)	48, 800 (23. 3)
			キ゛ムノテ゛ィニウム ミキモトイ	羽状目	羽状目	クリフ [°] トモナス 目	ŧ"A/ディニウム ミキモトイ
			10, 400 (16. 5)	100, 800 (28. 7)	33, 600 (13. 0)	28, 800 (17. 6)	44, 600 (21. 3)
主	要	種	リソ゛ソレニア カルカアウ゛ィス	キートケロス属			羽状目
細	胞	数	8, 800 (13. 9)	44, 800 (12. 7)			39, 800 (19. 0)
ソコ内に	は組属	戈比:%)					
	知	T 類	重 類 数 m 胞 数 r	国 類 数 15	国 類 数 15 20 351,600 351,600 かた 殿 (mL) 量 (0.05 7ラシオンラ科 13,600(21.5) キェム/ディニウム ミキモトイ 10,400(16.5) 100,800(28.7) キートケロス属 知 胞 数 8,800(13.9) 44,800(12.7)	重 類 数 15 20 17 田 胞 数 63,200 351,600 258,400 た 殿 量 〈0.05 〈0.05 〈0.05 〈0.05 〉 羽状目 「13,600(21.5) 104,000(29.6) 148,800(57.6) 羽状目 10,400(16.5) 100,800(28.7) 33,600(13.0) 主 要 種 リゾ、ソレニア カルカアウ、ィス キートケロス属 田 胞 数 8,800(13.9) 44,800(12.7)	指 類 数 15 20 17 26 細 胞 数 63,200 351,600 258,400 164,000 た 殿 量 〈0.05

- 注:1.種類数の平均は総種類数を示す。
 - 2. 主要種は各調査点での上位5種(ただし組成比10%以上のもの)を示す。
 - 3. 細胞数、沈殿量の単位は、1L当たりで示す。

表4-3-1-2 植物プランクトン出現種一覧 [平成26年度夏季分]

調査年月日:平成26年 8月 5日

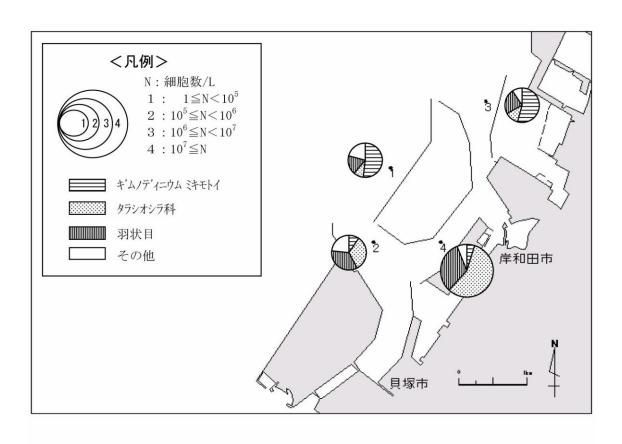

		T	1		日:平成26年 8月 51
番号 門	綱	目	科	学名	和名、読み方
1 クリプト植物	クリプト藻	クリフ゜トモナス	_	Cryptomonadales	クリプトモナス目
2 渦鞭毛植物	渦鞭毛藻	フ゜ロロケントルム	フ゜ロロケントルム	Prorocentrum micans	
3				Prorocentrum minimum	
4		デ゛ィノフィシス	アンフィソレニア	Oxyphysis oxytoxoides	
5		キ゛ムノテ゛ィニウム	キ゛ムノテ゛ィニウム	Gymnodinium mikimotoi	
6				Gymnodinium sp.	
7			ホ゜リクリコス	<i>Polykrikos</i> sp.	
8			_	Gymnodiniales	キ゛ムノテ゛ィニウム科
9		へ゜リテ゛ィニウム	ケラチウム	Ceratium furca	
10				Ceratium fusus	
11				Ceratium kofoidii	
12			へ。リテ、ィニウム	Protoperidinium crassipes	
13				Protoperidinium spp.	
14			カルキオテ゛ィネラ	Scrippsiella spinifera	
15			=	Peridiniales	ペリディニウム科
16 ハプト植物	ハプト藻	イソクリシス	ケ゛フィロカフ゜サ	Gephyrocapsa oceanica	
17 黄色植物	黄金色藻	デ゛ィクチオカ	エブ゛リア	Ebria tripartita	
18	珪藻	円心	タラシオシラ	Skeletonema costatum	
19				Thalassiosira spp.	
20				Thalassiosiraceae	タラシオシラ科
21			メロシラ	Leptocylindrus danicus	
22				Leptocylindrus minimus	
23			アステロラムフ゜ラ	Asteromphalus sarcophagus	
24			ヘミテ゛ィスクス	Actinocyclus sp.	
25			リソ゛ソレニア	Rhizosolenia calcar avis	
26				Rhizosolenia fragilissima	
27				Rhizosolenia setigera	
28			ヒ゛タ゛ルフィア	Cerataulina pelagica	
29			キートケロス	Chaetoceros decipiens	
30				Chaetoceros distans	
31				Chaetoceros lorenzianum	
32				Chaetoceros spp.	
33		羽状	ナヴ゛ィキュラ	Navicula spp.	
34				Pleurosigma sp.	
35			ニッチア	Cvlindrotheca closterium	
36				Nitzschia pungens	
37				Nitzschia spp.	
38			_	Pennales	羽狀目
39 緑色植物	プラシノ藻			Prasinophyceae	プラシノ藻綱

表4-3-1-3 植物プランクトン調査結果(細胞数) [平成26年度夏季分]

調査年月日:平成26年 8月 5日

		調査点	1		2	2	:	3	4		高金年月日: 平成26年 8月 5日 合計		
番号	学名	層	上層	下層	上層	下層	上層	下層	上層	下層	上層	下層	全層
1	Cryptomonadales		14, 400	4, 000	35, 200	25, 600	17, 600	8, 000	46, 400	28, 800	113, 600	66, 400	180, 000
-	Prorocentrum micans								400		400		400
_	Prorocentrum minimum						1,600				1,600		1,600
	Oxyphysis oxytoxoides									3, 200		3, 200	3, 200
5	Gymnodinium mikimotoi		208, 000	10, 400	73,600	9, 600	436, 800	148, 800	172, 800	9, 600	891, 200	178, 400	1, 069, 600
	Gymnodinium sp.		3, 200	1,600	6, 400	3, 200					9, 600	4,800	14, 400
	<i>Polykrikos</i> sp.									400		400	400
_	Gymnodiniales		3, 200	2, 400	12,800	6, 400	8,000	1, 600	12, 800	4, 800	36, 800	15, 200	52, 000
	Ceratium furca		14, 400	2, 000	9,600	400	4, 800	2, 000	12, 800	400	41,600	4,800	46, 400
10	Ceratium fusus		4,800	800	400	400	400	1, 600	1, 200	800	6, 800	3,600	10, 400
	Ceratium kofoidii		800	400	400			400	1, 200	400	2, 400	1, 200	3, 600
	Protoperidinium crassipes						400				400		400
13	Protoperidinium spp.				400		3, 200			1, 600	3, 600	1,600	5, 200
14	Scrippsiella spinifera						400		400		800		800
15	Peridiniales		6, 400		3, 200		1,600				11, 200		11, 200
	Gephyrocapsa oceanica		9,600	4, 800	6, 400	8, 000	3, 200	3, 200	4,800	9, 600	24, 000	25, 600	49, 600
	Ebria tripartita							400				400	400
18	Skeletonema costatum					6, 400			6, 400	3, 200	6, 400	9,600	16, 000
19	Thalassiosira spp.		4,800	4, 000	1,600	9, 600	1,600	3, 200	12,800	1,600	20, 800	18, 400	39, 200
20	Thalassiosiraceae		38, 400	3, 200	256, 800	104, 000	100, 800	25, 600	2, 030, 400	62, 400	2, 426, 400	195, 200	2, 621, 600
21	Leptocylindrus danicus									1, 600		1,600	1,600
22	Leptocylindrus minimus					12, 800						12, 800	12, 800
23	Asteromphalus sarcophagus						1,600	1,600			1,600	1,600	3, 200
24	Actinocyclus sp.								3, 200		3, 200		3, 200
25	Rhizosolenia calcar avis		4,800	8, 800	1,600	1, 200	3,600	6, 400	1, 200	400	11, 200	16, 800	28, 000
26	Rhizosolenia fragilissima				4,800	1,600				3, 200	4, 800	4,800	9, 600
27	Rhizosolenia setigera									400		400	400
28	Cerataulina pelagica				3, 200				1,600		4, 800		4, 800
29	Chaetoceros decipiens				3, 200				6, 400	1, 200	9, 600	1, 200	10, 800
30	Chaetoceros distans					3, 200						3, 200	3, 200
31	Chaetoceros lorenzianum					2,000			6, 400		6, 400	2,000	8, 400
32	Chaetoceros spp.		3, 200	1,600	48,000	44, 800	9,600		27, 200	1,600	88, 000	48, 000	136, 000
33	Navicula spp.									3, 200		3, 200	3, 200
34	<i>Pleurosigma</i> sp.				400					400	400	400	800
35	Cylindrotheca closterium		3, 200	3, 200	6, 400	3, 200	4,800	4, 800	16,000	6, 400	30, 400	17,600	48, 000
36	Nitzschia pungens					2,000	1,600	2, 800	4,800	2, 800	6, 400	7,600	14, 000
37	<i>Nitzschia</i> spp.			2, 400	3, 200			1,600		3, 200	3, 200	7, 200	10, 400
38	Pennales		70, 400	13, 600	271, 200	100, 800	187, 200	33, 600	1, 137, 600	11, 200	1, 666, 400	159, 200	1, 825, 600
39	Prasinophyceae		11, 200		35, 200	6, 400	12,800	12, 800	56, 000	1,600	115, 200	20, 800	136, 000
	種類数		16	15	22	20	20	17	22	26	31	32	39
	合計		400,800	63, 200	784, 000	351, 600	801,600	258, 400	3, 562, 800	164, 000	5, 549, 200	837, 200	6, 386, 400

注1:細胞数の単位は1L当たりで示す。

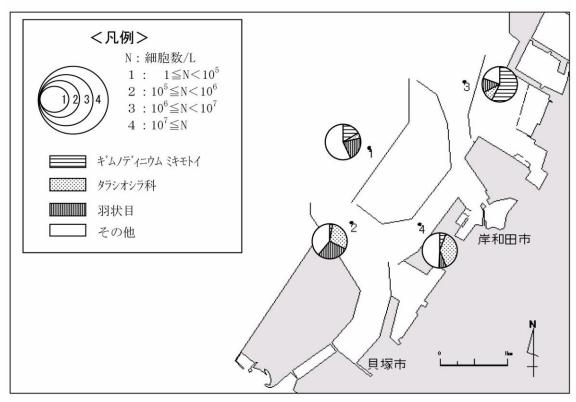


図4-3-1 植物プランクトンの水平分布 [平成26年度夏季分]

表 4-3-2-1 動物プランクトン調査結果概要 [平成 26 年度夏季分]

調査年月日:平成26年 8月 5日 平均 調査点 1 2 3 4 (最小 ~ 最大) 項目 32 種 23 22 20 21 \sim 23) 39, 479 個 体 数 34,618 44, 398 35, 115 43, 785 $(34,618 \sim 44,398)$ 沈 殿 5.4 6.8 5.0 4.8 5. 1 (mL)4.8 ∼ 6.8) オイトナータ゛ウ゛ィサエ オイトナータ゛ウ゛ィサエ ミクロセテラ ノルウ゛ェシ゛カ ミクロセテラ ノルウ゛ェシ゛カ ミクロセテラ ノルウ゛ェシ゛カ 14, 110 (40. 8) 14, 021 (31. 6) 12, 706 (36. 2) 17,857 (40.8)9,837 (24.9)カイアシ目のノープリウス幼生 ミクロセテラ ノルウ゛ェシ゛カ カイアシ目のノープリウス幼生 オイトナ属 オイトナ ダヴィサエ 8, 382 (23. 9) (13.7)8, 207 9, 956 (28. 8) 9,032 (20.3)6,000 (20.8)ウスカワミシ゛ンコ ウスカワミシ゛ンコ 要 ウスカワミシ゛ンコ カイアシ目のノープリウス幼生 5, 341 (15. 4) 7, 011 (15. 8) 6, 794 (19.3)6, 407 (16.2)(カッコ内は組成比:%) ウスカワミシ゛ンコ (14.5)5, 715

- 注:1.種類数の平均は総種類数を示す。
 - 2. 主要種は各調査点での上位5種(ただし組成比10%以上のもの)を示す。
 - 3. 個体数、沈殿量の単位は1m³当たりで示す。

表4-3-2-2 動物プランクトン出現種一覧 [平成26年度夏季分]

調査年月日:平成26年 8月 5日

		1		T		調査年月日:平成26年 8月 5
番号		綱	目	科	学名	和名
	刺胞動物	とト"ロムシ	とト゛ロムシ	_	HYDROIDA	ヒト゛ロムシ目
2	袋形動物	ワムシ	コカ゛タワムシ	ト゛ロワムシ	Synchaeta sp.	
3	軟体動物	マキカ゛イ	_	_	veliger of GASTOROPODA	マキガイ綱のヴェリジャー幼生
4		ニマイカ゛イ	_	-	D-shaped larva of BIVALVIA	ニマイガイ綱のD型幼生
5			_	_	umbo Larva of BIVALVIA	ニマイガイ綱の殻頂期幼生
6	環形動物	コ゛カイ	_	_	nectochaeta of POLYCHAETA	ゴカイ綱のネクトキータ幼生
7	節足動物	甲殼	ミシ゛ンコ	オオメミシ゛ンコ	Evadne tergestina	トケ゛ナシエホ゛シミシ゛ンコ
8				シタ゛ミシ゛ンコ	Penilia avirostris	ウスカワミシ゛ンコ
9			カイアシ	ハ [°] ラカラヌス	Paracalanus parvus	
10					Paracalanus sp.	
11				ケントロハ゜ケ゛ス	Centropages furcatus	
12				アカルティア	Acartia sinjiensis	
13					Acartia sp.	
14				テモラ	Temora turbinata	
15					Temora sp.	
16				オイトナ	Oithona davisae	
17					Oithona similis	
18					Oithona sp.	
19				コリケウス	Corycaeus affinis	
20					Corycaeus sp.	
21				オンケア	Oncaea sp.	
22				エクティノソマ	Microsetella norvegica	
23				タキテ゛ィウス	Euterpina acutifrons	
24				_	Harpacticoida	ハルハ゜クチス亜目
25				_	nauplius of Copepoda	カイアシ目のノープリウス幼生
26			フシ゛ツホ゛	_	nauplius of Cirripedia	アジツボ亜目のノープリウス幼生
27				_	cypris of Cirripedia	アジツボ亜目のキプリス幼生
28			十脚	-	zoea of Decapoda	十脚目のゾエア幼生
29				_	megalopa of Decapoda	十脚目のメガロパ幼生
	毛顎動物	ヤムシ	ヤムシ	サシ゛ッタ	Sagitta sp.	
_	原索動物	サルハ°	ウミタル	ト゛リオルム	Doliolidae	ウミタル科
	脊椎動物	硬骨魚	_	_	egg of OSTEICHTHYES	硬骨魚綱の卵

表 4-3-2-3 動物プランクトン調査結果(個体数) [平成 26 年度夏季分]

調查年月日: 平成26年 8月 5日

				<u> </u>	: 平成26年	三 8月 5日
番号	学名 調査点	1	2	3	4	合計
1	HYDROIDA		63			63
2	<i>Synchaeta</i> sp.			176		176
3	veliger of GASTOROPODA		379	353	429	1, 161
4	D-shaped larva of BIVALVIA	132			71	203
5	umbo Larva of BIVALVIA	330	442	529	500	1,801
6	nectochaeta of POLYCHAETA	66	695		571	1, 332
7	Evadne tergestina	1,648	1, 958	3, 265	1,500	8, 371
8	Penilia avirostris	5, 341	7, 011	6, 794	3, 714	22, 860
9	Paracalanus parvus	132	126	88	143	489
10	<i>Paracalanus</i> sp.	462	505	529	286	1, 782
11	Centropages furcatus			88		88
12	Acartia sinjiensis	659	505	88	4, 214	5, 466
13	Acartia sp.	330	505	265	643	1, 743
14	Temora turbinata		63			63
15	Temora sp.	198	63	88		349
16	Oithona davisae	330	14, 021	618	17, 857	32, 826
17	Oithona similis		63			63
18	<i>Oithona</i> sp.	132	4, 295	88	6,000	10, 515
19	Corycaeus affinis	66	316	265	214	861
20	Corycaeus sp.	264	189	176	143	772
21	<i>Oncaea</i> sp.		126	88		214
22	Microsetella norvegica	14, 110	9, 032	12, 706	3, 500	39, 348
23	Euterpina acutifrons	66				66
24	Harpacticoida				143	143
25	nauplius of Copepoda	9, 956	3, 789	8, 382	3, 500	25, 627
26	nauplius of Cirripedia	132		265	143	540
	cypris of Cirripedia		63		71	134
28	zoea of Decapoda	132	63	88		283
29	megalopa of Decapoda		126			126
	Sagitta sp.			88	143	231
31	Doliolidae	66				66
32	egg of OSTEICHTHYES	66		88		154
		21	23	22	20	32
í	-))	34, 618	44, 398	35, 115	43, 785	157, 916
参考	Noctiluca scintillans				143	143

注:個体数は $1m^3$ 当たりで示す。ただし、調査点合計は $4m^3$ 当たりで示す。

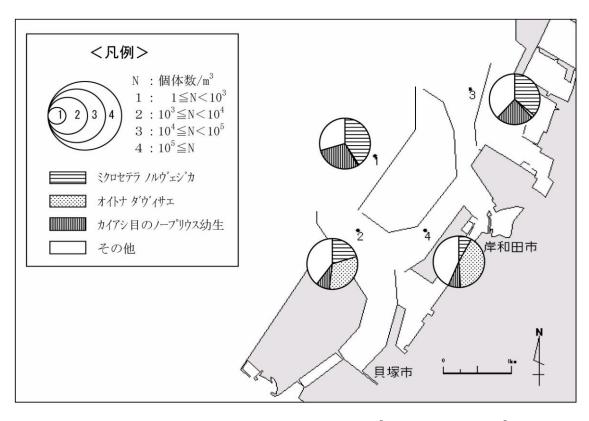


図4-3-2 動物プランクトンの水平分布 [平成26年度夏季分]

表 4-3-3-1 底生生物調査結果概要 [平成 26 年度夏季分]

調查年月日:平成26年 8月 6日

						調査年月日:	平成26年 8	月り日
項目	、 調査点	1	2	3	4	平均 (最小 ~	最大)
	軟体動物門	1		2		3 (0 ~	2)
種 類 数	環形動物門	5		6		8 (0 ~	6)
類	節足動物門					(0 ~	0)
数	その他	2		3		5 (0 ~	3)
	合 計	8	0	11	0	16 (0 ~	11)
	軟体動物門	2		2		1 (0 ~	2)
個	環形動物門	87		28		29 (0 ~	87)
	節足動物門					0 (0 ~	0)
数	その他	3		21		6 (0 ~	21)
	合 計	92	0	51	0	36 (0 ~	92)
組個	軟体動物門	2. 2		3.9		2.8 (0.0 ~	3.9)
成体 比数	環形動物門	94. 6		54. 9		80.6 (0.0 ~	94.6)
	節足動物門					0.0 (0.0 ~	0.0)
(%)	その他	3. 3		41. 2		16.7 (0.0 ~	41.2)
	軟体動物門	0.01		+		+ (0.00 ∼	0.01)
湿 重	環形動物門	0. 65		0.21		0.22 (0.00 ∼	0.65)
量	節足動物門					0.00 (0.00 ∼	0.00)
(g)	その他	0.66		0.15		0.20 (0.00 ∼	0.66)
	合 計	1. 32	0.00	0.36	0.00	0.42 (0.00 ∼	1.32)
		パラプリオノスピオ属(A型)		フォロニス属		パラプリオノスピオ属(A	型)	
		81 (88. 0)		18 (35. 3)			23 (63	3. 6)
主	要種			パラプリオノスピオ属(A型)		フォロニス属		
	体数			10 (19. 6)		7 A 7 7 7 1 - 4	5(12	(6)
							5(12	0)
(カッコ内)	は組成比:%)			グリキンデ属				
				7 (13. 7)				
•		千年24.4						

注:1.種類数の平均は総種類数を示す。

^{2.} 主要種は各調査点での上位5種(ただし組成比10%以上のもの)を示す。

^{3.} 個体数及び湿重量(g)は0.1m²当たりで示す。

^{4.「+」}は0.01g未満を示す。

表 4-3-3-2 底生生物出現種一覧 [平成 26 年度夏季分]

調査年月日: 平成26年 8月 6日

番号	門	綱		科	学名	和名
	刺胞動物	花虫	イソキ゛ンチャク	ムシモト ** キキ ** ンチャク	Edwardsiidae	ムシモト゛キキ゛ンチャク科
2			ハナキ゛ンチャク	ハナキ゛ンチャク	Cerianthidae	ハナキ゛ンチャク科
3	紐形動物	-	_	_	NEMERTINEA	紐形動物門
4	軟体動物	マキカ゛イ	ニナ	ワカウラツホ゛	Sinusicola yendoi	イリエツホ゛
5			クチキレカ゛イ	トウガタガイ	Pyramidellidae	トウガタガイ科
6		ニマイガ・イ	ハマク゛リ	ツキカ゛イ	Pillucina pisidium	ウメノハナカ゛イ
7	環形動物	コ゛カイ	サシハ゛コ゛カイ	カキ゛コ゛カイ	Sigambra sp.	
8				オトヒメコ゛カイ	Gyptis sp.	
9				コ゛カイ	Leonnates sp.	
10				ニカイチロリ	Glycinde sp.	
11			イソメ	キ゛ホ゛シイソメ	Scoletoma longifolia	カタマカ゛リキ゛ホ゛シイソメ
12			スピ。オ	スピオ	Prionospio pulchra	イトエラスヒ [°] オ
13					Paraprionospio sp. (A型)	
14				ミス゛ヒキゴカイ	Cirriformia tentaculata	ミス゛ヒキコ゛カイ
15	触手動物	ホウキムシ	ホウキムシ	ホウキムシ	Phoronis sp.	
16		腕足	シャミセンカ゛イ	シャミセンカ゛イ	Lingula sp.	シャミセンカ゛イ属

表 4-3-3-3 底生生物調査結果(個体数) [平成 26 年度夏季分]

調査年月日: 平成26年 8月 6日

					<u> </u>	1:平成203	十 0万 0日
番号	学名	調査点	1	2	3	4	合計
1	Edwardsiidae		1				1
2	Cerianthidae				1		1
3	NEMERTINEA		2				2
4	Sinusicola yendoi		2				2
5	Pyramidellidae				1		1
6	Pillucina pisidium				1		1
7	Sigambra sp.		2		3		5
8	Gyptis sp.		1				1
9	Leonnates sp.		1				1
10	Glycinde sp.				7		7
11	Scoletoma longifolia		2		5		7
12	Prionospio pulchra				2		2
13	Paraprionospio sp.(A型)		81		10		91
14	Cirriformia tentaculata				1		1
15	Phoronis sp.				18		18
16	Lingula sp.				2		2
	種類数		8	0	11	0	16
	合 計		92	0	51	0	143

注: 個体数は $0.1 m^2$ 当たりで示す。ただし、調査点合計の欄は $0.4 m^2$ 当たりで示す。

表 4-3-3-4 底生生物調査結果(湿重量) [平成 26 年度夏季分]

調査年月日:平成26年 8月 6日

					Hul Hr. 1 / 1 F	1 . 十八亿0	1 0/1 0 H
番号	学名	調査点	1	2	3	4	合計
1	Edwardsiidae		+				+
2	Cerianthidae				0.02		0.02
3	NEMERTINEA		0.66				0.66
4	Sinusicola yendoi		0.01				0.01
5	Pyramidellidae				+		+
6	Pillucina pisidium				+		+
7	Sigambra sp.		+		+		+
8	Gyptis sp.		+				+
9	Leonnates sp.		+				+
10	Glycinde sp.				0.01		0.01
11	Scoletoma longifolia		+		0.02		0.02
12	Prionospio pulchra				+		+
13	Paraprionospio sp. (A型)		0.65		0.05		0.70
14	Cirriformia tentaculata				0.13		0.13
15	Phoronis sp.				0.08		0.08
16	Lingula sp.				0.05		0.05
	種類数		8	0	11	0	16
	合 計	_	1. 32	0.00	0.36	0.00	1.68

注: 1.「+」は0.01g未満を示す。

^{2.} 湿重量(g) は0. $1m^2$ 当たりで示す。ただし、調査点合計の欄は0. $4m^2$ 当たりで示す。

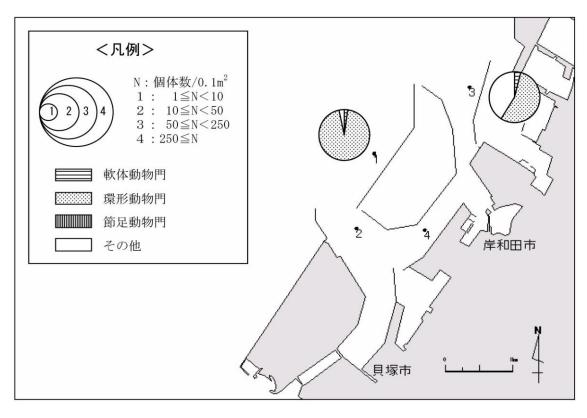


図4-3-3 底生生物の水平分布 [平成26年度夏季分]

表 4-3-4-1 魚卵調査結果概要 [平成 26 年度夏季分]

調査年月日:平成26年 8月 6日 平均 調査点 1 2 3 4 項目 (最小 ~ 最大) 10 種 類 数 6 6 8 6 $6 \sim$ 8) 21,824 個 数 22,074 36, 927 19, 339 8,955 $8,955 \sim 36,927$ 単脂卵4 0.58∼0.69mm 単脂卵4 0.58~0.69mm 単脂卵4 0.58~0.69mm 単脂卵4 0.58~0.69mm 単脂卵4 0.58~0.69mm 12, 598 (57. 1) 25, 892 (70. 1) 8, 308 (92. 8) 14, 290 (65. 5) 10, 361 (53. 6) 単脂卵5 0.70∼0.78mm 単脂卵5 0.70~0.78mm 単脂卵5 0.70~0.78mm 単脂卵5 0.70∼0.78mm 要 6,576 (30.1) 主 6, 989 (31. 7) 10, 210 (27. 6) 8, 593 (44. 4) カタクチイワシ (カッコ内は組成比:%) 2, 476 (11. 2)

注:1.種類数の平均は総種類数を示す。

2. 主要種は各調査点での上位5種(ただし組成比10%以上のもの)を示す。

3. 個数の単位は1,000m³当たりで示す。

表 4-3-4-2 魚卵出現種一覧 [平成 26 年度夏季分]

調査年月日:平成26年 8月 6日

番号	門	綱	目	科	学名	和名
1	脊椎動物	硬骨魚	ニシン	ニシン	Sardinella zunasi	サッハ°
2				カタクチイワシ	Engraulis japonicus	カタクチイワシ
3			ウハ゛ウオ	ネス゛ッホ゜	Callionymidae	ネズッポ科
4			カレイ		SOLEOIDEI	ウシノシタ亜目
5			不明	不明	Unidentified n.o. egg-1	無脂卵1 1.13-1.23mm
6					Unidentified s.o. egg-4	単脂卵4 0.58~0.69mm
7					Unidentified s.o. egg-5	単脂卵5 0.70~0.78mm
8					Unidentified s.o. egg-6	単脂卵6 0.88~0.89mm
9					Unidentified s.o. egg-7	単脂卵7 0.90∼0.98mm
10					Unidentified s.o. egg-8	単脂卵8 1.45~1.55mm

表 4-3-4-3 魚卵調査結果(個数) [平成 26 年度夏季分]

調査年月日:平成26年 8月 6日

						19:4 1 7 4	H . 1977,70	1 071 0 H
番号	学名	和名	調査点	1	2	3	4	合計
1	Sardinella zunasi	サッハ [°]			39	5	43	87
2	Engraulis japonicus	カタクチイワシ		2, 476	759	358	60	3, 653
3	Callionymidae	ネズッポ科			2			2
4	SOLEOIDEI	ウシノシタ亜目					17	17
5	Unidentified n.o. egg-1	無脂卵1 1.13	3-1.23mm	3	5	2		10
6	Unidentified s.o. egg-4	単脂卵4 0.58	$8\sim$ 0.69mm	12, 598	25, 892	10, 361	8, 308	57, 159
7	Unidentified s.o. egg-5	単脂卵5 0.70	$0\sim 0.78$ mm	6, 989	10, 210	8, 593	510	26, 302
8	Unidentified s.o. egg-6	単脂卵6 0.8	$8 \sim 0.89 \text{mm}$				17	17
9	Unidentified s.o. egg-7	単脂卵7 0.9	$0 \sim 0.98 \text{mm}$	4	15	20		39
10	Unidentified s.o. egg-8	単脂卵8 1.4	$5\sim$ 1.55mm	4	5			9
1	重類数			6	8	6	6	10
î)			22, 074	36, 927	19, 339	8, 955	87, 295

注: 個数は $1,000\text{m}^3$ 当たりで示す。ただし調査点合計の欄は $4,000\text{m}^3$ 当たりで示す。

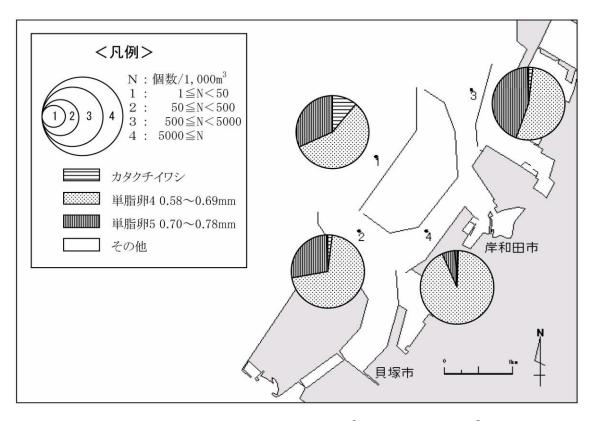


図4-3-4-1 魚卵の水平分布 [平成26年度夏季分]

表 4-3-4-4 稚仔魚調査結果概要 [平成 26 年度夏季分]

調査年月日:平成26年 8月 6日 平均 調査点 2 3 1 4 項目 (最小 ~ 最大) 類 数 種 18 12 14 11 11 ~ 18) 409 体 171 93 1,039 333 $93 \sim 1,039$ アミメハキ゛ カタクチイワシ カタクチイワシ カタクチイワシ カタクチイワシ 146 (85. 4) 701 (67. 5) 226 (55. 2) 29 (31. 2) 172 (51. 7) ネズッポ科 初"水"科 主 要 82 (24. 6) 種 29 (31. 2) ナベカ属 (カッコ内は組成比:%) 14 (15. 1)

注:1.種類数の平均は総種類数を示す。

2. 主要種は各調査点での上位5種(ただし組成比10%以上のもの)を示す。 3. 個体数の単位は $1,000\text{m}^3$ 当たりで示す。

表 4-3-4-5 稚仔魚出現種一覧 [平成 26 年度夏季分]

調査年月日:平成26年 8月 6日

番号	門	綱	目	科	学名	和名
1	脊椎動物	硬骨魚	ニシン	ニシン	Sardinella zunasi	サッハ [°]
2				カタクチイワシ	Engraulis japonicus	カタクチイワシ
3			タラ	サイウオ	Bregmaceros sp.	サイウオ属
4			キンメタ゛イ	イットウタ゛イ	Holocentridae	イットウタ゛イ科
5			スス゛キ	カマス	Sphyraena sp.	カマス属
6				テンシ゛クタ゛イ	Apogon lineatus	テンシ゛クタ゛イ
7				アシ゛	Carangidae	アジ科
8				クロサキ゛	Gerres oyena	クロサキ゛
9				スス゛メタ゛イ	Chromis notatus notatus	スス゛メタ゛イ
10					Pomacentridae	スズメダイ科
11				ハタ	Epinephelus akaara	キシ゛ハタ
12				キス	Sillago japonica	シロキ゛ス
13				シマイサキ	Teraponidae	シマイサキ科
14				ハセ゛	Gobiidae	ハゼ科
15				イソキ゛ンホ゜	Omobranchus spp.	ナベカ属
16				トラキ゛ス	Mugiloididae	トラキ゛ス科
17			カサコ゛	コチ	Platycephalidae	コチ科
18			ウハ゛ウオ	ネス゛ッホ゜	Callionymidae	ネズッポ科
19			カレイ	タ゛ルマカ゛レイ	Bothidae	ダルマガレイ科
20				ウシノシタ	Cynoglossidae	ウシノシタ科
21			フク゛	カワハキ゛	Rudarius ercodes	アミメハキ゛
22					Stephanolepis cirrhifer	カワハキ゛
23				ハコフク゛	Ostraciidae	ハコフク゛科

表 4-3-4-6 稚仔魚調査結果(個体数) [平成 26 年度夏季分]

調査年月日:平成26年 8月 6日

					M-1 TT / 1	H /*/Q=0	
番号	学名	和名 調査点	1	2	3	4	合計
1	Sardinella zunasi	サッハ°		2	14		16
2	Engraulis japonicus	カタクチイワシ	1	29	701	172	903
3	Bregmaceros sp.	サイウオ属			2		2
	Holocentridae	イットウタ゛イ科	1				1
5	Sphyraena sp.	カマス属			5		5
6	Apogon lineatus	テンシ゛クタ゛イ			9		9
7	Carangidae	アジ科	1	5	68	20	94
8	Gerres oyena	クロサキ゛	1		2	7	10
9	Chromis notatus notatus	スス゛メダ イ			4	2	6
10	Pomacentridae	双,好,一个	1	2	2		5
11	Epinephelus akaara	キシ゛ハタ	1		11		12
12	Sillago japonica	シロキ゛ス	3	2	53	2	60
13	Teraponidae	シマイサキ科		2	2		4
14	Gobiidae	nt"科		3	27		30
15	Omobranchus spp.	ナベカ属	3	14	57		74
16	Mugiloididae	トラキ"ス科				2	2
17	Platycephalidae	3 5科	1	2	2	15	20
18	Callionymidae	ネズッポ科	1	29	44	82	156
19	Bothidae	ダルマガレイ科	1		25	20	46
20	Cynoglossidae	ウシノシタ科			11	2	13
21	Rudarius ercodes	アミメハキ゛	146	3		7	156
22	Stephanolepis cirrhifer	カワハキ゛	9			2	11
23	Ostraciidae	ハコフグ科	1				1
Ŧ	重類数		14	11	18	12	23
)		171	93	1,039	333	1,636
1.1	四十巻は1 000 3 以上 10 元二十 ナナ	0 x = == 1 . 1 . A = 1	2.1			•	

注: 個体数は1,000m³当たりで示す。ただし調査点合計の欄は4,000m³当たりで示す。

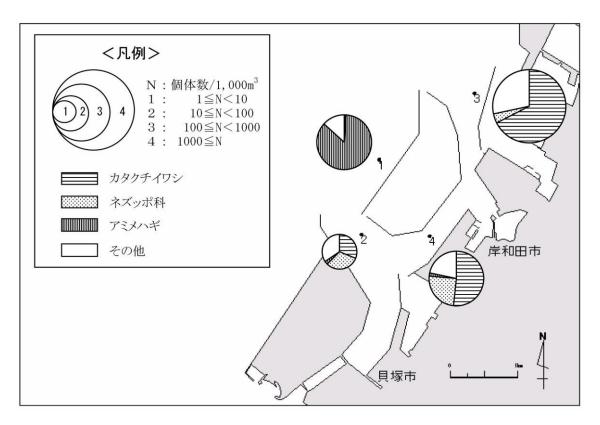


図4-3-4-2 稚仔魚の水平分布 [平成26年度夏季分]

表 4-3-5-1(1) 付着生物出現種一覧(目視観察)

調 査 日:平成26年 8月 8日

St. A調査時刻:08:45~10:20調査方法:ベルトトランセクト法

		観察枠No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		基質					コ	ン	ク	IJ	-	<u>۱</u>	ケ	_	ソ	ン			l	
出現	種	★深(m)	+1.0	0.	0	1.	0	2.	0	3.	0	4.	0	5.	0	6.	0	7.	0	8. 0
	1	藍藻綱		10																
植	2	₹ <i>N</i>			+	10	10													
物	3	シオク゛サ属			15	45	10													
190	4	ススカケヘ゛ニ														r	r	+	+	+
	1	アラレタマキヒ゛カ゛イ	(20)																	
	2	イワフシ゛ツホ゛	20	85	10															
	3	タマキヒ゛カ゛イ		(1)																
	4	マカ゛キ		+																
	5	マツハ゛カ゛イ		(10)																
	6	キクノハナカ゛イ		(2)																
	7	ヒサ゛ラカ゛イ		(4)	(1)															
	8	∃ メ カ ゙ カ サ カ ゙ イ		(5)	(8)															
	9	イホ゛ニシ		(2)	(3)	(3)	(2)		(1)		(1)	(1)	(2)		(1)		(1)		(2)	(4)
	10	カンサ゛シコ゛カイ科		10	10	10	15	40	40	45	30	25	10	10	10	10	10	10	5	+
	11	タテシ゛マイソキ゛ンチャク			2															
動	12	ヒト゛ロムシ綱			+	+	+	+												
	13	ムラサキイカ゛イ			25	20	+	+	r											
	14	普通海綿綱			20	10	15	5	5	+	+	+	r	r			r			
	15	フサコケムシ				45	40	15	10	10	5									
物	16	サンカクフシ゛ツホ゛						r	r	r			r	+	+					
	17	群体性ホヤ類						+	+	+	r	r	r	r	r			+	+	
	18	シロホ*ヤ							(2)											
	19	サンショウウニ							(2)		(1)	(4)		(2)					(1)	(1)
	20	イソキ゛ンチャク目									+						r	+	+	
	21	シマメノウフネカ゛イ										(1)						(2)	(3)	(5)
	_	シオカ゛マサンコ゛													(1)	(1)		(2)	(4)	(3)
	23	泥巣															r	50	50	50
	24	アミメコケムシ科																+	+	
		ユウレイボヤ属																(1)	(1)	
	26	ヒトテ゛																		(1)
	27	レイシカ゛イ																		(3)

注)1. 数字は被度(%)を表し、+記号は5%以下、r記号は1%未満を示す。

^{2.()}内の数字は個体数を表す。

表 4-3-5-1(2) 付着生物出現種一覧(目視観察)

調 査 日:平成26年 8月 8日

St. B

調査時刻:10:30~12:45 調査方法:ベルトトランセクト法

		観察枠No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			1	4	ی	4	υ	υ	被	٥	覆	10	石	14	19	14	19	10	11
LLI 7 th	144		11.0	0.	0	1.	0	2.	10.4	3.	154	4.		5.	0	6.	0	7.	0
出現	_	藍藻綱	+1.0	0.	5	1.	U	2.	U	3.	U	4.	U	5.	U I	6.	I	ί.	U
	_	シオク゛サ属			10	40													
		オキツノリ			10	40	+					+							
植		ツルシラモ					_			+				_					
		ツノマタ属				15	5							5					
物		アオサ属				5	+	+			r	+		+					
		マクサ				5	30	25	10	10	5	+	10	10	15	+			
	-	イトグサ属														+			
	9	ムカテ゛ノリ				5								+					
	12	カバーノリ							+	+	10	+	10	+	5	5	5	+	
	1	イシタ゛タミカ゛イ		(1)															
	2	ヒサ゛ラカ゛イ			(1)														
	3	ムラサキイカ゛イ			r														
	4	コカ゛モカ゛イ属			(2)														
	5	コシタカカ゛ンカ゛ラ			(3)	(3)	(5)	(2)			(2)		(2)	(3)	(1)				
	6	カンサ゛シコ゛カイ科			+	10	40	20		+	5	+	5	+	+	+		+	
動	7	イホ゛ニシ				(1)													
293	8	ヤドカリ類				(3)	(2)	(1)		(4)	(1)	(1)	(1)						
	9	イトマキヒトテ゛					(2)	(2)	(1)		(1)		(1)						
	10	サンカクフシ゛ツホ゛					+	10	10	5	5	+	+	+	r	r	r		r
	11	キクサ゛ル属								(1)				(2)		(2)		(1)	
物	12	アラムシロカ゛イ										(1)							
	13	マカ゛キ										+							
	14	ナミマカ゛シワカ゛イ科										(1)							
		シマメノウフネカ゛イ										(9)	(5)	(15)	(11)	(6)	(12)	(12)	(8)
		ウミキ゛ク属												(1)	, ,	1	. /	<u> </u>	
		イワカ゛キ												+					
	_	泥巣													5		10	+	+
	10	VU/N													Ŭ		10		

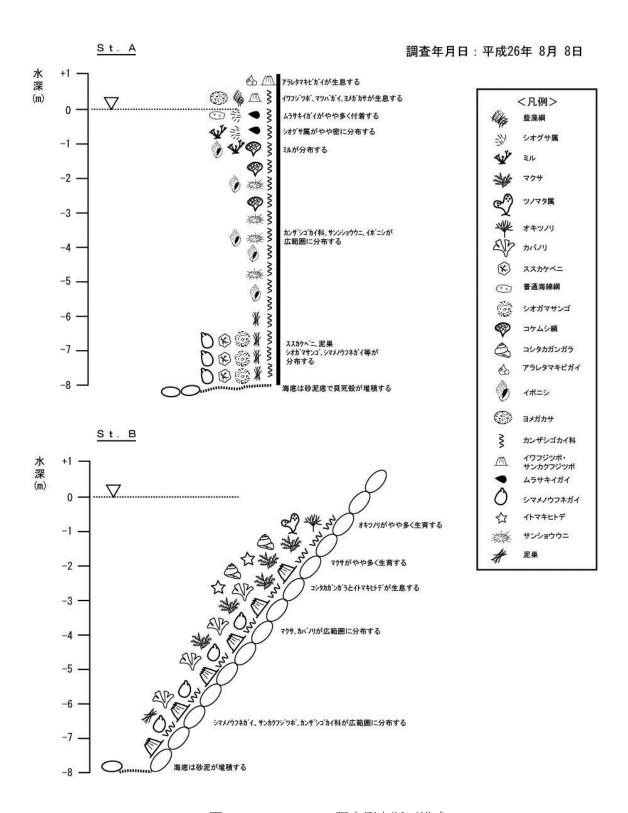
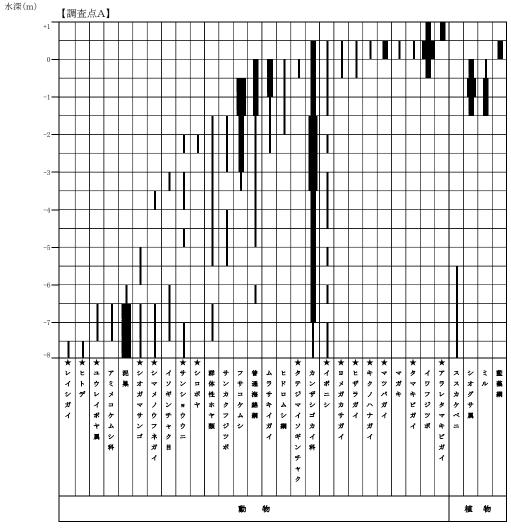
注)1. 数字は被度(%)を表し、+記号は5%以下、r記号は1%未満を示す。

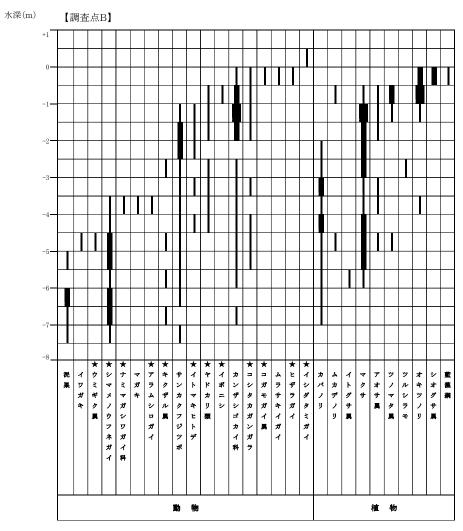
^{2.()}内の数字は個体数を表す。

表 4-3-5-2 付着生物(植物)藻長測定結果

調査日:平成26年 8月 8日

	17 4	
出現種\地点	St.A	St.B
藍藻綱	測定不可	測定不可
₹ <i>N</i>	50mm~150mm	
シオク゛サ属	5mm~10mm	5mm~10mm
ススカケヘ゛ニ	50mm~100mm	
オキツノリ		20mm~70mm
ツルシラモ		70mm~100mm
ツノマタ属		50mm~100mm
アオサ属		50mm~80mm
マクサ		20mm~150mm
イトグサ属		20mm~40mm
ムカテ゛ノリ		50mm~120mm
カハ゛ノリ		30mm~100mm


図4-3-5-1 調査測点断面摸式

調査日:平成26年8月8日

図4-3-5-2(1) 主な付着生物の鉛直分布

調査日:平成26年8月8日

図4-3-5-2(2) 主な付着生物の鉛直分布

表 4-3-5-3 付着生物調査結果概要(坪刈り:植物) [平成 26 年度夏季分]

								調査年月日	: 平成26年	三8月 8日
	調査点		A			В		平均 (最小 ~	最大)
項目	層	上層	中層	下層	上層	中層	下層	1-5 (对文/1	3久/()
	緑藻植物門		2	1		2	2	3 (0 ~	2)
種	褐藻植物門							(0 ~	0)
類	紅藻植物門		3	2		3	4	7 (0 ~	4)
数	その他	1	1		1	1		1 (0 ~	1)
	合 計	1	6	3	1	6	6	11 (1 ~	6)
湿	緑藻植物門		0.10	+		0.09	0.02	0.04 (0.00 ~	0.10)
重	褐藻植物門							(0.00 ~	0.00)
	紅藻植物門		0. 12	0. 03		43. 33	15. 25	9.79 (0.00 ~	43.33)
量	その他	0.02	+		2. 39	0.06		0.41 (0.00 ~	2. 39)
(g)	合 計	0.02	0. 22	0. 03	2. 39	43. 48	15. 27	10. 24(0.02 ~	43.48)
組湿	緑藻植物門		45. 5	-		0.2	0.1	0.4 (0.0 ~	45.5)
成重比量	褐藻植物門							(0.0 ~	0.0)
八 里	紅藻植物門		54. 5	100.0		99. 7	99. 9	95.6 (0.0 ~	100.0)
(%)	その他	100.0	-		100.0	0.1		4.0 (0.0 ~	100.0)
		ナカ`レクタ`モ属 0.02(100.0)	0.09(40.9)	0.02(66.7)	2. 39 (100. 0)	20. 97 (48. 2)	マクサ 13. 57 (88. 9)		3.	55 (34. 7)
主要 湿重 (カッコ内は	量		イトグサ属 0.06(27.3) イギス属	イトグサ属 0.01(33.3)		ムカテ゛/リ 20. 38 (46. 9)		ムカテ゛ノリ マクサ	3.	55 (34. 6)
			0.04(18.2)						2.	59 (25. 3)

- 注:1.上層は平均水面、中層は大潮最低低潮面、下層は大潮最低低潮面-1mを示す。
 - 2. 平均欄の種類数は総種類数を示す。
 - 3. 主要種は各調査点の各層で上位5種(ただし組成比10%以上のもの)を示す。ただし、0.01g/0.09m²未満の場合は除く。
 - 4. 湿重量は0.09m²当たりで示す。湿重量の「+」は0.01g未満を示し、湿重量組成比欄の「-」は計算不能を示す。

表 4-3-5-4 付着生物出現種一覧(坪刈り:植物) [平成 26 年度夏季分]

調査年月日:平成26年8月 8日

番号	門	綱	目	科	学名	和名
1	藍藻植物	藍藻	ユレモ	フォルミテ゛ィウム	Phormidium sp.	ナガレクダモ属
2	緑藻植物	緑藻	アオサ	アオサ	Enteromorpha sp.	アオノリ属
3					Ulva sp.	アオサ属
4			シオク゛サ	シオク゛サ	Cladophora sp.	シオク゛サ属
5	紅藻植物	紅藻	テンク゛サ	テンク゛サ	Gelidium elegans	マクサ
6			スキ゛ノリ	スキ゛ノリ	Chondrus sp.	ツノマタ属
7				ムカテ゛ノリ	Grateloupia filicina	ムカテ゛ノリ
8				オキツノリ	Ahnfeltiopsis flabelliformis	オキツノリ
9			作 、ス	/ キ゛ス	Ceramium sp.	件"ス属
10					<i>Griffithsia</i> sp.	カザシグサ属
11				フシ゛マツモ	Polysiphonia sp.	イトグサ属

表 4-3-5-5 付着生物調査結果(坪刈り:植物:湿重量) [平成 26 年度夏季分]

調査年月日:平成26年8月8日

								日:平成20	<u>) 十0月 0日</u>
	į	調査点		A			В		合計
番号	学名	層	上層	中層	下層	上層	中層	下層	
1	Phormidium sp.		0.02	+		2. 39	0.06		2. 47
2	Enteromorpha sp.			0.01					0.01
3	<i>Ulva</i> sp.						0.09	0.02	0.11
4	Cladophora sp.			0.09	+		+	+	0.09
5	Gelidium elegans						1. 98	13. 57	15. 55
6	Chondrus sp.							0.48	0.48
7	Grateloupia filicina						20. 38	0.89	21. 27
8	Ahnfeltiopsis flabelliformis						20. 97	0.31	21. 28
9	Ceramium sp.			0.04	0.02				0.06
10	Griffithsia sp.			0.02					0.02
11	<i>Polysiphonia</i> sp.			0.06	0.01				0.07
1	重類数	-	1	6	3	1	6	6	11
1	含計	_	0.02	0. 22	0.03	2.39	43. 48	15. 27	61.41

注: 1.上層は平均水面、中層は大潮最低低潮面、下層は大潮最低低潮面-1mを示す。

^{2.「+」}は0.01g未満を示す。

^{3.} 湿重量(g) は $0.09m^2$ 当たりで示す。ただし、調査点合計の欄は $0.54m^2$ 当たりで示す。

表 4-3-5-6 (1) 付着生物調査結果概要(坪刈り:動物:個体数) [平成 26 年度夏季分]

調査年月日:平成26年8月8日

									口: 平成26年8	7/10 H
	調査点		A			В		平均 (最	Lily a. E	最大)
項目	層	上 層	中 層	下 層	上 層	中 層	下 層	平均 (耳	え小 〜 月	又八)
	軟体動物門	4	6	4	1	9	11	19 (1 ~	11)
種	環形動物門	2	19	19	2	11	15	30 (2 ~	19)
類数	節足動物門	8	17	18	3	6	10	33 (3 ~	18)
数	その他	2	12	11	1	4	5	16 (1 ~	12)
	合 計	16	54	52	7	30	41	98 (7 ~	54)
	軟体動物門	29	1,065	1,005	1	24	78	367 (1 ~ 1,0)65)
個	環形動物門	7	3, 873	2, 081	3	44	234	1,040 (3 ~ 3,8	373)
体数	節足動物門	36	217	166	12	13	82	88 (12 ~ 2	217)
数	その他	11	831	645	*	3	7	250 (3 ~ 8	331)
	合 計	83	5, 986	3, 897	16	84	401	1,745 (16 ~ 5,9	986)
組個	軟体動物門	34. 9	17.8	25. 8	6. 3	28.6	19. 5	21.0 (6.3 ∼	34.9)
成体比数	環形動物門	8. 4	64. 7	53. 4	18.8	52. 4	58. 4	59.6 (8.4 ~	64.7)
比数	節足動物門	43. 4	3.6	4. 3	75. 0	15. 5	20. 4	5.0 (3.6 ∼	75.0)
(%)	その他		13.9	16. 6	+	3.6	1.7	14.3 (+ ~	16.6)
個	要種	25 (30. 1 マツハ゛カ゛イ 23 (27. 7 イソキ゛ンチャク目	ト・デ・カケリア属 3,235(54.0) ムテサキイカ・イ 1,033(17.3) クモヒトテ・綱 741(12.4)	1,712(43.9) ムラサキイカ イ 996(25.6) クモヒトテ 瀬	9 (56.3) ド・テ・カケリア属 2 (12.5) ノルマンタナイス	12(14.3)	96 (23. 9) ポ゚リドラ属 42 (10. 5)	ムラサキイカ゛イ	339	(47. 3) (19. 4) (13. 0)
			下屋片十湖县低低湖石 1-							

注:1.上層は平均水面、中層は大潮最低低潮面、下層は大潮最低低潮面-1mを示す。

^{2.} 種類数の平均は総種類数を示す。

^{3.} 主要種は各調査点の各層で上位5種(ただし組成比10%以上のもの)を示す。

^{4.} 個体数は0.09m²当たりで示す。

^{5.「*」}は群体性の種の出現を示す。

^{6.} 個体数が群体性の種の場合、個体数組成比は「+」で示す。

表 4-3-5-6 (2) 付着生物調査結果概要(坪刈り:動物:湿重量) [平成 26 年度夏季分]

									調査年	月日: 平成2	6年8月8日
	調	査点		A			В		平均 (最小 ~	最大)
項目	/	層	上層	中層	下層	上 層	中層	下層	十岁(取力	取八)
	軟体	動物門	22. 54	1, 078. 58	951.86	0.07	8. 00	29. 25	348. 38 (0.07 ∼	1, 078. 58)
湿 重 量	環形!	動物門	+	15. 16	8. 33	+	0.04	0.41	3.99 (+ ~	15. 16)
量	節足!	動物門	0. 33	4. 90	4. 30	0.01	0.08	8. 21	2.97 (0.01 ∼	8. 21)
	そ(の他	0.49	9. 62	12. 42	+	0. 27	0.74	3.92 (+ ~	12.42)
(g)	合	計	23. 36	1, 108. 26	976. 91	0.08	8. 39	38. 61	359. 26 (0.08 ∼	1, 108. 26)
組湿	軟体!	動物門	96. 5	97. 3	97. 4	87.5	95. 4	75.8	97.0 (75.8 ~	97.4)
成重比量	環形	動物門	+	1.4	0.9	+	0. 5	1.1	1.1 (+ ~	1.4)
戊 重	節足!	動物門	1. 4	0.4	0.4	12.5	1.0	21. 3	0.8 (0.4 ~	21.3)
(%)	そ(の他	2. 1	0.9	1.3	+	3. 2	1.9	1.1 (+ ~	3.2)
	要種 重量 は組成		マツパカ゚イ 19.81(84.8)		951. 31 (97. 4)	0. 07 (87. 5)	6. 08 (72. 5) イボニシ	28. 01 (72. 5) サンカクフシ゛ツホ゛		337	. 00 (93. 8)

注:1.上層は平均水面、中層は大潮最低低潮面、下層は大潮最低低潮面-1mを示す。

^{2.} 主要種は各調査点の各層で上位5種(ただし組成比10%以上のもの)を示す。

^{3.} 湿重量は0.09m²当たりで示す。

^{4.} 湿重量が0.01g/0.09m²未満の場合、湿重量及び湿重量組成比は「+」で示す。

表 4-3-5-7 (1) 付着生物出現種一覧(坪刈り:動物) [平成 26 年度夏季分]

1	門	綱		科	学名	調査年月日:平成26年8月8 和名
	海綿動物	普通海綿		-	DEMOSPONGIAE	普通海綿綱
2	刺胞動物	上上。口口	_	_	HYDROZOA	上上,中本沙網
3		花虫	イソキ゛ンチャク	_	ACTINIARIA	イソキ、ンチャク目
	扁形動物	ウス゛ムシ	ヒラムシ	_	POLYCLADIDA	ヒラムシ目
	紐形動物		_	_	NEMERT I NEA	紐形動物門
	軟体動物	ヒサ゛ラカ゛イ	ヒサ゛ラカ゛イ	ヒケ゛ヒサ゛ラカ゛イ	Mopalia retifera	ヒケ゛ヒサ゛ラカ゛イ
7	+7(1+3)1/0	マキカ゛イ	オキナエヒ゛ス	ツタノハカ゛イ	Cellana grata	へ゛ッコウカ゛サカ゛イ
- 8	1	147/1	41/20 /	7777W 1	Cellana nigrolineata	マツハ゛カ゛イ
9				ユキノカサカ゛イ		ヒメコサ゛ラカ゛イ
	 			ニシキウス゛カ゛イ	Patelloida pygmaea	
10	-		b		Omphalius rusticus	コシタ゛カカ゛ンカ゛ラ
11			ニナ	ミシ゛ンウキツホ゛	Diala varia	スス゛メハマツホ゛
12	1			10 2120121	Diffalaba picta	シマハマツボ
13	4		8.4	カリハ゛カ゛サカ゛イ	Crepidula onyx	シマメノウフネカ゛イ
14	_		バイ	アクキカ゛イ	Thais bronni	レイシカ゛イ
15	<u> </u>				Thais clavigera	イホ*ニシ
16			クチキレカ゛イ	トウガ <i>タ</i> ガイ	Babella caelatior	クサス゛リクチキレカ゛イ
17	<u> </u>				Pyramidellidae	トウカ゛タカ゛イ科
18			フ゛ト゛ウカ゛イ	タマコ゛カ゛イ	Haloa japonica	フ゛ト゛ウカ゛イ
19	[ニマイカ゛イ	イガイ	<i>ላ</i> ታ	Modiolus nipponicus	ヒハ゛リカ゛イ
20	1				Musculista senhousia	ホトトキ゛スカ゛イ
21]				Musculus cupreus	タマエカ゛イ
22	1	1			Mytilus edulis	ムラサキイカ゛イ
23	1		ウク゛イスカ゛イ	イタホ゛カ゛キ	Crassostrea gigas	マカ゛キ
24	1		ハマク゛リ	イワホリカ゛イ	Petricolidae	イワホリカ イ科
	環形動物	コ゛カイ	サシハ゛コ゛カイ	ウロコムシ	Harmothoe sp.	
26	>K/1/ 29/1 1//	/ "	7 7.1	/	Halosydna brevisetosa	ミロクウロコムシ
27	t				Lepidonotus sp.	N. / / mv
28	†			タンサ゛クコ゛カイ	Chrysopetalidae	タンサ゛クコ゛カイ科
	1	1		サシバ コ゛カイ		777 7- N144
29	1			y 2/1 - 2 1/1	Eulalia sp.	
30					Eumida sp.	
31	ļ				Genetyllis sp.	
32	-			オトヒメコ゛カイ	Ophiodromus sp.	
33	1			シリス	Trypanosyllis taeniaformis	シマシリス
34	[Syllinae	シリス亜科
35				コ゛カイ	Neanthes caudata	ヒメコ゛カイ
36					Nereis multignatha	
37	[Nereis pelagica	フツウコ゛カイ
38	[Perinereis cultrifera	クマト゛リコ゛カイ
39	1				Platynereis bicanaliculata	ツルヒケ゛コ゛カイ
40	1				Platynereis dumerilii	イソツルヒケ゛コ゛カイ
41	1		イソメ	イソメ	Eunice antennata	
42	i				Eunice sp.	
43	1			セク゛ロイソメ	Arabella iricolor	セク゛ロイソメ
44	†			ノリコイソメ	Dorvilleidae	ノリコイソメ科
45	†		スヒ゜オ	スピオ	Aonides oxycephala	77 17711
46	†		7.6 7	7.5 %	Polydora sp.	
47	1		ミス゛ヒキコ゛カイ	ミス゛ヒキコ゛カイ	Cirriformia tentaculata	ミス゛ヒキコ゛カイ
48	1		\/ L1= W1	\X L1= //1	Dodecaceria sp.	(A C1= W1
	1		/l ¬ * + /	イトコ゛カイ		
49	<u> </u>		イトコ゛カイ		Capitella sp.	Laitha ita
50			オフェリアコ゛カイ	オフェリアコ゛カイ	Polyophthalmus pictus	カスリオフェリア
51	1		フサコ゛カイ	フサコ゛カイ	Terebellidae	フサコ゛カイ科
52	-		ケヤリ	カンサ゛シコ゛カイ	Hydroides elegans	カサネカンサ゛シコ゛カイ
53					Hydroides ezoensis	エソ゛カサネカンサ゛シ
54		1			Hydroides sp.	
	節足動物	ウミク゛モ	_	_	PYCNOGONIDA	ウミク゛モ綱
56]	甲殼	フシ゛ツホ゛	イワフシ゛ツホ゛	Chthamalus challengeri	イワフシ゛ツホ゛
57]			フシ゛ツホ゛	Balanus improvisus	ヨーロッハ゜フシ゛ツホ゛
58					Balanus trigonus	サンカクフシ゛ツホ゛
]		タナイス	タナイス	Anatanais normani	ノルマンタナイス
59	1		ワラシ゛ムシ	ウミナナフシ	Paranthuridae	ウミナナフシ科
59 60		1		ウミミス゛ムシ	Janiridae	ウミス゛ムシ科
60	<u> </u>				Dynoides dentisinus	シリケンウミセミ
60 61				127/ 42		
60 61 62				コツフ゛ムシ		
60 61 62 63			Hurr'		Paracerceis japonica	ツノオウミセミ
60 61 62 63 64			3317,	ヒケ゛ナカ゛ヨコエヒ゛	Paracerceis japonica Ampithoe sp.	ツノオウミセミ
60 61 62 63 64 65			321t,	ヒケ゛ナカ゛ョコエヒ゛ ユンホ゛ソコエヒ゛	Paracerceis japonica Ampithoe sp. Aoridae	
60 61 62 63 64 65 66			371,	ヒケ゛ナカ゛ヨコエヒ゛ ユンホ゛ソコエヒ゛ ト゛ロクタ゛ムシ	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp.	ツノオウミセミ
60 61 62 63 64 65 66			321F,	ヒケ゛ナカ゛ ヨコエヒ゛ ユンホ゛ソコエヒ゛ ト゛ロクケ゛ムシ カマキリヨコエヒ゛	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp. Ericthonius sp.	ツノオウミセミ
60 61 62 63 64 65 66 67			Borf,	ヒケ*ナカ*ヨコエヒ* ユンホ*ソコエヒ* ト*ロケタ*ムシ カマキリヨコエヒ* チヒ*ヨコエヒ*	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp. Ericthonius sp. Gitanopsis sp.	ツノオウミセミ
60 61 62 63 64 65 66 67 68			3316,	とケッナカッヨコエヒッコンボッソコエヒッコンボッソコエヒットッロクタッムシカマキリヨコエヒッチヒッヨコエヒッタテソコエヒックテソコエヒックロエヒックロエヒックロエヒックロエヒックロエヒックロエヒックロエヒックロ	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp. Ericthonius sp. Gitanopsis sp. Stenothoe sp.	ツノオウミセミ
60 61 62 63 64 65 66 67 68 69 70			3316,	とケッナカッヨコエヒッコンボッソコエヒットッロクタッムシートッロクタッムシーカマキリヨコエヒッチヒッヨコエヒッタテソコエヒッチフンエヒッチンコエヒットロスッヨコエヒットロスッヨコエヒックティーカス・ココエヒックティーカー・ココエヒックティーカー・ココエヒックティーカー・ココエヒックティーカー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファ	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp. Ericthonius sp. Gitanopsis sp. Stenothoe sp. Hyale sp.	ツノオウミセミ ユンボ ' ソコエヒ [*] 科
60 61 62 63 64 65 66 67 68 69 70			331,	とケ*ナカ*ヨコエヒ* ユンボ*ソコエヒ* ト*ロクケ*ムシ カマキリヨコエヒ* チヒ*ヨコエヒ* ケテソコエヒ* モクス*ヨコエヒ* ソコ*ナカ*ヨコエヒ*	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp. Ericthonius sp. Gitanopsis sp. Stenothoe sp. Hyale sp. Pontogeneia rostrata	ツノオウミセミ ユンホ * ソコエヒ * 科 フコ * ナカ * ヨコエヒ *
60 61 62 63 64 65 66 67 68 69 70			3316,	とケッナカッヨコエヒッコンボッソコエヒットッロクタッムシートッロクタッムシーカマキリヨコエヒッチヒッヨコエヒッタテソコエヒッチフンエヒッチンコエヒットロスッヨコエヒットロスッヨコエヒックティーカス・ココエヒックティーカー・ココエヒックティーカー・ココエヒックティーカー・ココエヒックティーカー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファ	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp. Ericthonius sp. Gitanopsis sp. Stenothoe sp. Hyale sp.	ツノオウミセミ ユンボ・ソコエヒ・科
60 61 62 63 64 65 66 67 68 69 70			Burf.	とケ*ナカ*ヨコエヒ* ユンボ*ソコエヒ* ト*ロクケ*ムシ カマキリヨコエヒ* チヒ*ヨコエヒ* ケテソコエヒ* モクス*ヨコエヒ* ソコ*ナカ*ヨコエヒ*	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp. Ericthonius sp. Gitanopsis sp. Stenothoe sp. Hyale sp. Pontogeneia rostrata	ツノオウミセミ ユンボ * ソコエヒ * 科
600 611 622 633 644 655 666 677 7077 7177 7273			Burf.	とケ*ナカ*ヨコエヒ* コンボ*ソコエヒ* ト*ロクタ*ムシ カマキリヨコエヒ* チヒ*ヨコエヒ* グテソコエヒ* モクズ*ヨコエヒ* アコ*ナカ*ヨコエヒ* メリタヨコエヒ*	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp. Ericthonius sp. Gitanopsis sp. Stenothoe sp. Hyale sp. Pontogeneia rostrata Elasmopus japonicus Caprella equilibra	ツノオウミセミ ユンホ " ソコエヒ " 科 アコ " ナカ" ヨコエヒ " イソヨコエヒ "
60 61 62 63 64 65 66 67 70 71 72 73 74				とケ・ナカ・ココヒ・ ユンボ・ソコエヒ・ ト・ロクケ・ムン カマキリココエヒ・ チヒ・ココエヒ・ タテソコエヒ・ モケズ・ココエヒ・ アコ・ナカ・ココエヒ・ メリタコエヒ・ ワルカラ	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp. Ericthonius sp. Gitanopsis sp. Stenothoe sp. Hyale sp. Pontogeneia rostrata Elasmopus japonicus Caprella equilibra Caprella penantis	ツノオウミセミ ユンボ "ソコエヒ" 科 ブコ" ナカ" ヨコエヒ" イソヨコエヒ" クヒ" ナカ" ワレカラ マルエラワレカラ
600 611 622 633 644 655 666 677 707 717 727 737 744			16,	とケ"ナカ"ヨコエヒ" コンボ"ソコエヒ" ト"ロクケ" ムン カマキリヨコエヒ" チヒ"ヨコエヒ" グテソコエヒ" モケズ"ヨコエヒ" アコ"ナカ"ヨコエヒ" メリタヨコエヒ" ワルカラ デナカ"エヒ"	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp. Ericthonius sp. Gitanopsis sp. Stenothoe sp. Hyale sp. Pontogeneia rostrata Elasmopus japonicus Caprella equilibra Caprella penantis Palaemonoidae	ツノオウミセミ ユンボ "ソコエヒ" 科 アコ" ナカ" ヨコエヒ" イソヨコエヒ" クヒ" ナカ" リカラ マルエラリノカラ テナカ"エヒ" 科
600 611 622 633 644 655 666 677 707 717 727 737 744 755				とケ"ナカ" ヨコエヒ" コンボ" ソコエヒ" ト"ロクケ" ムン カマキリヨコエと" チピ"ヨコエと" チアリコエヒ" モケス" ヨコエヒ" アコ"ナカ" ヨコエヒ" アリカラ デナカ" エヒ" デッポ" ウエヒ"	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp. Ericthonius sp. Gitanopsis sp. Stenothoe sp. Hyale sp. Pontogeneia rostrata Elasmopus japonicus Caprella equilibra Caprella penantis Palaemonoidae Alpheus sp.	ツノオウミセミ ユンボ "ソコエヒ" 科 アコ" ナカ" ヨコエヒ" イソヨコエヒ " クヒ" ナカ" リカカラ マルエラリレカラ テナカ" エヒ" *科 テッボ ウエヒ " 無
600 611 622 633 644 655 666 677 70 71 72 73 74 75 76				とケ・ナカ・ココエヒ・ ユンボ・ソコエヒ・ ト・ロクケ・ムシ カマキリココエヒ・ チヒ・ココエヒ・ チナ・ココエヒ・ モクス・ココエヒ・ マフ・ナカ・ココエヒ・ ソリタココエヒ・ ワルカラ デナカ・エヒ・ デッボ・ウエヒ・ モエモ・	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp. Ericthonius sp. Gitanopsis sp. Stenothoe sp. Hyale sp. Pontogeneia rostrata Elasmopus japonicus Caprella equilibra Caprella penantis Palaemonoidae Alpheus sp. Hippolytidae	プノオウミセミ ユンボ * ソコエヒ * 科 アコ * ナか * ヨコエヒ * イソヨコエヒ * イソヨコエヒ * クヒ * ナカ * ワルカラ マルエラリルカラ テナカ * エヒ * 科 テッポ * ウェヒ * 属 モエヒ * 科
60 61 62 63 64 65 66 67 70 71 72 73 74 75 76				とケ"ナカ" ヨコエヒ" コンボ" ソコエヒ" ト"ロクケ" ムン カマキリヨコエと" チピ"ヨコエと" チアリコエヒ" モケス" ヨコエヒ" アコ"ナカ" ヨコエヒ" アリカラ デナカ" エヒ" デッポ" ウエヒ"	Paracerceis japonica Ampithoe sp. Aoridae Corophium sp. Ericthonius sp. Gitanopsis sp. Stenothoe sp. Hyale sp. Pontogeneia rostrata Elasmopus japonicus Caprella equilibra Caprella penantis Palaemonoidae Alpheus sp.	ツノオウミセミ ユンボ 'ソコエヒ' 科 アコ ' ナカ' ヨコエヒ ' イソヨコエヒ ' クヒ ' ナカ' リカラ マルエラリレカラ テナカ ' エヒ ' 科 テッポ ウエヒ ' 属

表 4-3-5-7(2) 付着生物出現種一覧(坪刈り:動物) [平成 26 年度夏季分]

調査年月日:平成26年8月8日

番号	門	綱	目	科	学名	和名
81	節足動物	甲殼	IL"	ワタリカ゛ニ	Charybdis sp.	イシガニ属
82				オウキ゛カ゛ニ	Pilumnus minutus	ヒメケフ゛カカ゛ニ
83					Sphaerozius nitidus	スヘ゛スヘ゛オウキ゛カ゛ニ
84				イワカ゛ニ	Hemigrapsus sanguineus	イソカ゛ニ
85				クモカ゛ニ	Pugettia quadridens quadridens	ョツハ゛モカ゛ニ
86				1	megalopa of BRACHYURA	カニ亜目のメガロパ期幼生
87		昆虫	ハエ	ユスリカ	Chironomidae	ユスリカ科
88	触手動物	コケムシ	フタコケムシ	フサコケムシ	Bugulidae	フサコケムシ科
89				トケ゛コケムシ	Scrupocellariidae	トケ゛コケムシ科
90				ヒラコケムシ	Schizoporellidae	ヒラコケムシ科
91			_	1	BRYOZOA	コケムシ綱
92	棘皮動物	ヒトテ゛	トケ゛ヒトテ゛	アステリナ	Asterina pectinifera	イトマキヒトデ
93		クモヒトテ゛	_	1	OPHIUROIDEA	クモヒトデ綱
94	原索動物	ホヤ		ホ゜リクリニ	Polyclinidae	ポリクリニ科
95			マホ゛ヤ	スチエラ	Polyandrocarpa zorritensis	クロマメイタホ゛ヤ
96					Styelidae	スチェラ科
97				ピ ウラ	Pyuridae	ピウラ科
98	脊椎動物	硬骨魚	スス゛キ	イソキ゛ンホ゜	Pictiblennius yatabei	イソキ゛ンホ゜

表 4-3-5-8(1) 付着生物調査結果(坪刈り:動物:個体数) [平成 26 年度夏季分]

調査年月日:平成26年8月8日 合計 下層 番号 学名 層 上層 中層 下層 上層 中層 1 DEMOSPONGIAE 2 HYDROZOA 3 ACTINIARIA 11 4 POLYCLADIDA 45 5 NEMERTINEA 44 49 6 Mopalia retifera 7 Cellana grata 8 Cellana nigrolineata 9 Patelloida pygmaea 10 Omphalius rusticus 10 14 11 Diala varia 12 Diffalaba picta 13 Crepidula onyx 14 Thais bronni 15 Thais clavigera 16 Babella caelation 17 Pyramidellidae 18 Haloa japonica 13 20 19 Modiolus nipponicus 20 Musculista senhousia 37 21 Musculus cupreus 22 Mytilus edulis 1,033 996 2,033 23 Crassostrea gigas 24 Petricolidae 20 27 25 Harmothoe sp. 21 10 39 26 Halosydna brevisetosa 24 44 27 Lepidonotus sp. 16 25 28 Chrysopetalidae 29 Eulalia sp. 30 Eumida sp. 31 Genetyllis sp. 32 Ophiodromus sp. 276 81 30 399 33 Trypanosyllis taeniaformis 60 258 35 Neanthes caudata 10 36 Nereis multignatha 12 17 37 Nereis pelagica 38 Perinereis cultrifera 39 Platynereis bicanaliculata 40 Platynereis dumerilii 41 Eunice antennata 42 Eunice sp. 43 Arabella iricolor 39 44 Dorvilleidae 13 15 45 Aonides oxycephala 10 10 46 Polydora sp. 54 42 47 Cirriformia tentaculata 49 48 Dodecaceria sp. 3, 235 1,712 4,951 49 Capitella sp. 50 Polyophthalmus pictus 2: 51 Terebellidae 11 52 Hydroides elegans 14 53 Hydroides ezoensis 17 108 96 227 54 Hydroides sp. 55 PYCNOGONIDA 56 Chthamalus challengeri 77 57 Balanus improvisus 24 101 58 Balanus trigonus 11 32 30 59 Anatanais normani 24 60 Paranthuridae 15 61 Janiridae 14 62 Dynoides dentisinus 63 Paracerceis japonica 64 Ampithoe sp. 18 65 Aoridae 66 Corophium sp. 67 Ericthonius sp. 68 *Gitanopsis* sp. 69 Stenothoe sp. 70 *Hyale* sp. 71 Pontogeneia rostrata 72 Elasmopus japonicus 40 26 67 73 Caprella equilibra 74 Caprella penantis 75 Palaemonoidae 76 Alpheus sp. 17 14 77 Hippolytidae 78 Paguridae 79 Pachycheles stevensii 80 Cancer gibbosulus

注: 1. 「*」は群体性の種の出現を示す。

^{2.} 個体数は $0.09m^2$ 当たりで示す。ただし、調査点合計の欄は $0.54m^2$ 当たりで示す。

表 4-3-5-8(2) 付着生物調査結果(坪刈り:動物:個体数) [平成 26 年度夏季分]

調査年月日: 平成26年8月8日

							月口: 干风4	20 0)10H
	調査点		A			В		合計
番号	学名	上層	中層	下層	上層	中層	下層	ПВІ
81	Charybdis sp.		9	1		1	7	18
82	Pilumnus minutus		2	30				32
83	Sphaerozius nitidus		22	16				38
84	Hemigrapsus sanguineus						2	2
85	Pugettia quadridens quadridens		10	5				15
86	megalopa of BRACHYURA		21	13			1	35
87	Chironomidae				9			9
88	Bugulidae		*	*	*			*
89	Scrupocellariidae		*	*		*		*
90	Schizoporellidae					*	*	*
91	BRYOZOA						*	*
92	Asterina pectinifera					2	3	5
93	OPHIUROIDEA		741	624				1, 365
94	Polyclinidae		*	*				*
95	Polyandrocarpa zorritensis		*	*				*
96	Styelidae		3	9		1		13
97	Pyuridae		2	6				8
98	Pictiblennius yatabei		1					1
Ŧ	重類数	16	54	52	7	30	41	98
2)計	83	5, 986	3, 897	16	84	401	10, 467

注: 1. 「*」は群体性の種の出現を示す。 2. 個体数は0.09m²当たりで示す。ただし、調査点合計の欄は0.54m²当たりで示す。

表 4-3-5-9 (1) 付着生物調査結果(坪刈り:動物:湿重量) [平成 26 年度夏季分]

	調査点		A			В		合計
賢号	学名 層	上層	中層	下層	上層	中層	下層	
	DEMOSPONGIAE		0.05	+				0.
	HYDROZOA ACTINIARIA	0.40	+	0. 01				0.
	POLYCLADIDA	0.49	0. 14	0. 03		-	+	0.
	NEMERTINEA	+	0. 14	0. 03			+	0.
	Mopalia retifera	'	0.04	0.02		0.18	'	0.
	Cellana grata	1. 48				0.10		1.
	Cellana nigrolineata	19. 81						19.
	Patelloida pygmaea	0.01			0. 07			0.
	Omphalius rusticus					6.08	28. 01	34.
11	Diala varia					+	+	+
	Diffalaba picta					+	+	+
	Crepidula onyx		0.63	0.37		0.35	0.04	1.
	Thais bronni		1. 29					1.
	Thais clavigera	1. 24	5. 12			1. 29		7.
	<i>Babella caelatior</i> Pyramidellidae					+	+ 0. 02	+ 0.
	Haloa japonica					0.07	0. 02	0.
	Modiolus nipponicus			-		0.07	0. 11	0.
	Musculista senhousia		+				0. 54	0.
	Musculus cupreus			+			0.01	+
	Mytilus edulis		1070.65	951. 31		0.03		2021.
	Crassostrea gigas						0. 20	0.
	Petricolidae		0.89	0.18			0. 12	1.
	Harmothoe sp.		0.04	0.09			0.04	0.
	Halosydna brevisetosa		1. 00	0.70				1.
	Lepidonotus sp.		0. 15	0.07				0.
	Chrysopetalidae		+					+
	Eulalia sp.		0. 03					0.
	Eumida sp.		0.00				+	+
	Genetyllis sp. Ophiodromus sp.	+	0. 02	+ 0. 19	+	+	0, 05	0.
	Trypanosyllis taeniaformis	т —	0. 83	0. 19	т —		0.05	0.
	Syllinae	+	0. 35	0. 14		+	+	0.
	Neanthes caudata	· ·	0.00	+		+	0. 03	0.
	Nereis multignatha		0. 12	0. 13			0, 00	0.
	Nereis pelagica		+	0. 01				0.
38	Perinereis cultrifera			0.14				0.
39	Platynereis bicanaliculata					+	0.01	0.
	Platynereis dumerilii						+	+
	Eunice antennata						+	+
	Eunice sp.			+				+
	Arabella iricolor		4. 10					4.
	Dorvilleidae Aonides oxycephala		0. 13	+			+	0. +
	Polydora sp.		+	0. 01		+	0. 03	0.
	Cirriformia tentaculata		0. 02	0. 01		+	0. 03	0.
	Dodecaceria sp.		8. 09	6. 50	+		+	14.
	Capitella sp.		0.00	0.00		+	+	+
	Polyophthalmus pictus		0.09	+				0.
	Terebellidae		0.09	0.09		+		0.
52	Hydroides elegans					0.02	+	0.
53	Hydroides ezoensis		0.07	0.16		0.02	0.18	0.
	<i>Hydroides</i> sp.					+		+
	PYCNOGONIDA			+				+
	Chthamalus challengeri	0.33	. =-					0.
	Balanus improvisus		0. 57	0. 44			7 00	1.
	Balanus trigonus			0. 30			7. 82	8.
	<i>Anatanais normani</i> Paranthuridae	+	+ +	+	+	-	0. 01	0.
	Paranthuridae Janiridae	т	+	+		-	0.01	+
	Janiridae Dynoides dentisinus	+	т —	т				+
	Paracerceis japonica						0. 03	0.
	Ampithoe sp.				+	0.01	0. 03	0.
	Aoridae	+	+					+
	Corophium sp.			+				+
67	Ericthonius sp.			+				+
	Gitanopsis sp.					+		+
	Stenothoe sp.	+						+
	Hyale sp.	+				+		+
	Pontogeneia rostrata					+		+
	Elasmopus japonicus	+	0. 15	0.07				0.
	Caprella equilibra		+	+		-	-	+
	Caprella penantis	+	+			-		+
	Palaemonoidae			+		-	-	
	Alpheus sp. Hippolytidae		+	0. 03 +			0.00	0
	Hippolytidae Paguridae		+	+		0.00	0. 02 0. 27	0
			0. 20	+		0.06	0. 27	0
	Pachycheles stevensii							

^{| 1. [+]} は0.01g未満を示す。 2. 湿重量は0.09m²当たりで示す。ただし、調査点合計の欄は0.54m²当たりで示す。

表 4-3-5-9(2) 付着生物調査結果(坪刈り:動物:湿重量) [平成 26 年度夏季分]

調査年月日:平成26年8月8日

	調査点	A			В			合計
番号	学名	上層	中層	下層	上層	中層	下層	
81	Charybdis sp.		0.06	0.01		0.01	0.03	0.11
82	Pilumnus minutus		0.13	2.12				2. 25
83	Sphaerozius nitidus		3. 39	1.12				4. 51
84	Hemigrapsus sanguineus						+	+
85	Pugettia quadridens quadridens		0. 28	0.14				0.42
86	megalopa of BRACHYURA		0.10	0.07			+	0.17
87	Chironomidae				0.01			0.01
88	Bugulidae		0.36	0.03	+			0.39
89	Scrupocellariidae		1.50	0.21		+		1.71
90	Schizoporellidae					+	0.05	0.05
91	BRYOZOA						+	+
92	Asterina pectinifera					0. 24	0.69	0. 93
93	OPHIUROIDEA		0.81	0.69				1.50
94	Polyclinidae		4. 63	5.89				10. 52
95	Polyandrocarpa zorritensis		0.08	0.52				0.60
96	Styelidae		1.17	3. 21		0.03		4.41
97	Pyuridae		0.21	1.81				2. 02
98	Pictiblennius yatabei		0.03	Ī				0.03
Ŧ	重類数	16	54	52	7	30	41	98
î	: :	23. 36	1, 108. 26	976. 91	0.08	8. 39	38.61	2, 155. 61

注: 1. 「+」は0.01g未満を示す。 2.湿重量は0.09m²当たりで示す。ただし、調査点合計の欄は0.54m²当たりで示す。

調査年月日:平成26年8月6~7日

	ря <u>н</u> , г	1 1 1 1/2/20 0/10 1 1
項目	調査点	1
14	魚類	8
種	甲 殼 類	2
類	頭足類	0
数	その他	0
300	合 計	10
/1731	魚 類	60
個	甲 殼 類	12
体	頭足類	0
数	その他	0
300	合 計	72
湿	魚類	10, 636. 5
重	甲 殼 類	1, 310. 4
	頭 足 類	0.0
量	その他	0.0
(g)	合 計	11, 946. 9

注:個体数、湿重量は1網当たりで示す。

調査年月日:平成26年8月6~7日

			調査年月日:平成26年8月6~	
項	目	調査点	1	
	個体数	魚類	アカエイ	(0. 0) (5. 0) (5. 0)
主		甲殼類	イシカ゛ニ カ゛サ゛ミ (4	(8. 3) (1. 7)
	(カッコ内は組成 比%)	頭足類		
		En 16mb		
要		魚類	シロキ、ス (1)	6.5) 8.4)
	湿重量			
種	(g)	甲殼類	カ [*] サ [*] ミ イシカ [*] ニ (2:	(5. 8) (4. 2)
	(カッコ内は組成 比%)	頭足類		

注:1.個体数、湿重量は1網当たりで示す。

2. 主要種は各調査点の各分類群で上位5種(ただし組成比5%以上のもの)を示す。

表 4-3-6-3 漁獲対象動植物調査結果(刺し網) [平成 26 年度夏季分]

平成26年8月6~7日

番号	門	綱	目	科	学名	和名	個体数	湿重量(g)
1	節足動物	甲殼	エヒ゛	ワタリカ゛ニ	Charybdis japonica	イシカ゛ニ	7	317. 3
2					Portunus trituberculatus	カ゛サ゛ミ	5	993. 1
3	脊椎動物	軟骨魚	エイ	アカエイ	Dasyatis akajei	アカエイ	3	891.8
4		硬骨魚	ニシン	ニシン	Konosirus punctatus	コノシロ	2	478. 1
5			ハタ゛カイワシ	エソ	Saurida elongata	トカケ゛エソ	1	110.8
6			スス゛キ	ホ ゛ラ	Mugil cephalus	ホ *ラ	3	7200.0
7				カマス	Sphyraena pinguis	アカカマス	1	71. 5
8				キス	Sillago japonica	シロキ゛ス	48	1756. 8
9				アシ゛	Decapterus maruadsi	マルアシ゛	1	34. 6
10				サハ゛	Scomber japonicus	マサハ゛	1	92. 9
					合計	_	72	11946. 9

注:個体数、湿重量は1網当たりで示す。

調査年月日: 平成26年 8月 7日

		. // //
項目	調査点	1
44	魚類	4
種	甲 殼 類	1
類	頭 足 類	0
数	その他	0
3 X	合 計	5
/111	魚 類	4
個	甲 殼 類	1
体	頭足類	0
数	その他	0
3 X	合 計	5
湿	魚類	2, 593. 7
重	甲 殼 類	16. 0
	頭足類	0.0
量	その他	0.0
(g)	合 計	2, 609. 7

注:個体数、湿重量は1網当たりで示す。

調査年月日: 平成26年 8月 7日

項	目 \	 調査点	河重千万 口 . 干成20年 · イ	
- FR	H \	魚類	アカエイ	(25.0)
		//// ///	シロキ゛ス	(25.0)
			イトヒキハセ゛	(25.0)
	個体数		カワハキ゛	(25.0)
				,
		甲殼類	イシカ゛ニ	(100.0)
主				
土				
	(カッコ内は組成	頭足類		
	比%)			
要		魚類	アカエイ	(98. 3)
女		点 類	/ A 上 1 	(90. 3)
	汨壬县			
	湿重量			
	(g)			,
	(8)	甲殼類	イシカ゛ニ	(100.0)
種				
1里				
	()			
	(カッコ内は組成	頭足類		
	比%)			

注:1.個体数、湿重量は1網当たりで示す。

2. 主要種は各調査点の各分類群で上位5種(ただし組成比5%以上のもの)を示す。

表 4-3-6-6 漁獲対象動植物調査結果(底引網) [平成 26 年度夏季分]

調査年月日:平成26年 8月7日

						μ/nj <u>H.</u>	·71 P · T/IX/	10 0)1 H	
番号	門	綱	目	科	学名	和名	個体数	湿重量(g)	
1	節足動物	甲殼	It"	ワタリカ゛ニ	Charybdis japonica	イシカ゛ニ	1	16. 0	
2	脊椎動物	軟骨魚	エイ	アカエイ	Dasyatis akajei	アカエイ	1	2550.0	
3		硬骨魚	スズ゛キ	キス	Sillago japonica	シロキ゛ス	1	21. 3	
4				nt"	Cryptocentrus filifer	イトヒキハセ゛	1	2.8	
5			フク゛	カワハキ゛	Stephanolepis cirrhifer	カワハキ゛	1	19. 6	
	合計								

注:個体数、湿重量は1網当たりで示す。

4-4 ダイオキシン類調査結果

4-4-1 水質調査結果

分析結果概要を表 4-4-1-1、それぞれの異性体および同族体別測定結果を表 4-4-1-2~表 4-4-1-7 に示す。また、異性体および同族体のパターンを図 4-4-1-1 で図 4-4-1-6 に示す。

本調査の結果は、0.058~0.064pg-TEQ/Lであり、各地点とも環境基準を下回っていた。 平成25年度「大阪府ダイオキシン類常時監視結果」(巻末参考資料参照)によると、大 阪湾における水質の濃度は0.022~0.047pg-TEQ/Lであり、今回の結果はそれらの結果と 比較するとほぼ同じ値であった。

表4-4-1-1 分析結果概要(水質)

試料名	試験項目	実測濃度	毒性等量
		(pg/L)	(pg-TEQ/L)
	PCDDs+PCDFs	0.57	0.055
St.1	Co-PCBs	5.5	0.0038
	ダイオキシン類	1	0.059
	PCDDs+PCDFs	0.92	0.055
St.2	Co-PCBs	7.0	0.0038
	ダイオキシン類	-	0.059
	PCDDs+PCDFs	0.53	0.055
St.3	Co-PCBs	6.7	0.0038
	ダイオキシン類	П	0.059
	PCDDs+PCDFs	2.3	0.056
St.4	Co-PCBs	11	0.0074
	ダイオキシン類	-	0.064
	PCDDs+PCDFs	0.07	0.055
St.S-1	Co-PCBs	5.8	0.0036
	ダイオキシン類		0.058
	PCDDs+PCDFs	0.68	0.055
St.S-2	Co-PCBs	7.5	0.0037
	ダイオキシン類	-	0.058

この表は、ダイオキシン類測定結果から一部のデータを抜粋した参考資料である。

毒性等量:2,3,7,8-T₄CDD 毒性等量を示す。 毒性等価係数は以下の係数を適用した。

PCDDs,PCDFs: WHO/IPCS (2006)

Co-PCBs: WHO/IPCS(2006)

毒性等量は検出下限未満のものは、試料における検出下限の1/2の値を用いて算出したものである。

表 4-4-1-2 ダイオキシン類調査結果(水質:St.1)

接触日 2014年8月日 試料量(L) 34.5 株計尺限性 定量下限性 実態温度		試料名		St.1		試料如	某体			水質	
### 接近 定量下限位 実測調度 ### WHO-TEF 2006 *1 WHO-TEF 2008 *2 PRO/L PRO/		採取日		2014年8月5	В	試料量	 (L)			34.5	
株出下限機 定量下限機 実験速度	$\overline{}$	NA-M-H				12V1 1 ±	_ (_/				
1,36,8-T,CDD				 	空景下阻抗	宇測連度			14 1-	<u> </u>	
13.6.8-T,CDD				快山下阪胆	此里下限胆	天则辰及		WHO-	ΓEF,2006 *1	WHO-	TEF,2006 *2
13.6.8-T,CDD											
13.7.8-T,CDD		T	_					pg	-TEQ/L	pg	g-TEQ/L
2,3.7.8-T,CDD		•		0.03	0.11	N.D.			_		_
T ₁ CDDs		1,3,7,9-T₄CDD		0.03	0.11	N.D.			_		_
## 12.3.7.8-P.CDD				0.03	0.11	N.D.		×1	0	×1	0.015
P_CODS				0.03	0.11	N.D.			_		_
# 1.2.3.4.7.8-H _s CDD	ダ	1,2,3,7,8-P ₅ CDD		0.03	0.11	N.D.		×1	0	×1	0.015
# 1,2,3,6,7,8-H ₄ CDD				0.03	0.11	N.D.			_		_
1,2,3,7,8,9+1,CDD	オ	1,2,3,4,7,8-H ₆ CDD		0.05	0.17	N.D.		× 0.1	0	× 0.1	0.0025
№ Description H ₀ CDDs 0.03 0.09 N.D. — — — 1,2,3,4,6,7,8-H ₂ CDD 0.06 0.19 (0.06)) < 0.01	キ	1,2,3,6,7,8-H ₆ CDD		0.05	0.18	N.D.			0		0.0025
1,2,3,4,6,7,8-H,CDD	シ	1,2,3,7,8,9-H ₆ CDD		0.03	0.09	N.D.			0		0.0015
H,CDDs	ン			0.03	0.09	N.D.			—		_
H,CDDs		1,2,3,4,6,7,8-H ₇ CDD		0.06	0.19	(0.06)	× 0.01	0	× 0.01	0.0006
Total PCDDs				0.06	0.19	(0.19)		_		_
Total PCDDs		O ₈ CDD		0.04	0.15	0.38		× 0.0003	0.000114	× 0.0003	0.000114
1,27,8-T ₄ CDF		_ *		_	_						
2.3.7.8−T₄CDF		1,2,7,8-T₄CDF		0.04	0.14	N.D.			_		_
T₄CDFs 0.04 0.14 N.D. — — — 1.2,3.7,8+1,2,3.4,8+P₂CDF 0.05 0.16 N.D. ×0.03 0 ×0.03 0.00075 2.3,4.7,8+P₂CDF 0.04 0.13 N.D. ×0.3 0 ×0.3 0.006 ⇒ P₂CDFs 0.04 0.13 N.D. — — — 1.2,3,4.7,8+1,2,3,4.7,9-H₄CDF 0.03 0.10 N.D. 0 0.0015 ≥ 1,2,3,6.7,8-H₄CDF 0.05 0.17 N.D. 0 0.0025 1.2,3,7.8,9-H₄CDF 0.06 0.21 N.D. 0 0.003 2.3,4.6,7.8-H₄CDF 0.06 0.21 N.D. 0 0.0015 H₄CDFs 0.03 0.10 N.D. — — — 1.2,3,4.7,8-9-H₄CDF 0.06 0.21 N.D. 0 0.0015 0.0003 1.2,3,4.7,8-9-H₄CDF 0.05 0.17 N.D. 0 0 0.00025 H₃CDFs 0.05 0.17		•						× 0.1	0	× 0.1	0.002
1.2,3,7,8+1,2,3,4,8−P ₅ CDF									_		_
2.3,4,7.8-P _g CDF		'	DF					× 0.03	0	× 0.03	0.00075
EyCDFs 0.04 0.13 N.D. — — X 1.2.3.4.7.8+1.2.3.4.7.9−H₀CDF 0.03 0.10 N.D. ×0.1 0 ×0.1 0.0015 ✓ 1.2.3.6.7.8−H₀CDF 0.05 0.17 N.D. 0 0.0025 ✓ 1.2.3.7.8,9−H₀CDF 0.06 0.21 N.D. 0 0.003 2.3.4.6.7.8−H₀CDF 0.03 0.10 N.D. — — — H₀CDFs 0.03 0.10 N.D. — — — 1.2.3.4.6.7.8−H₀CDF 0.06 0.21 N.D. — — — 1.2.3.4.7.8.9−H₀CDF 0.06 0.21 N.D. — — — — 0.05 0.17 N.D. —								× 0.3		× 0.3	
X 1,2,3,4,7,8+1,2,3,4,7,9−H₀CDF 0.03 0.10 N.D. ×0.1 0 ×0.01 0.0015 Y 1,2,3,6,7,8−H₀CDF 0.06 0.21 N.D. 0 0.003 Y 1,2,3,7,8,9−H₀CDF 0.06 0.21 N.D. 0 0.003 Z,3,4,6,7,8−H₀CDF 0.03 0.10 N.D. 0 0.0015 H₀CDFs 0.03 0.10 N.D. − − 1,2,3,4,6,7,8−H₀CDF 0.06 0.21 N.D. 0 0.0003 1,2,3,4,7,8,9−H₀CDF 0.06 0.21 N.D. ×0.01 0 ×0.001 0.0003 H₀CDFs 0.05 0.17 N.D. 0 ×0.0003 0.000025 H₀CDFs 0.05 0.17 N.D. ×0.0003 0 ×0.0003 0.000075 Total PCDDs+PCDFs - - N.D. 0 0 0.018 3,3,4,4,5,7-H₀CB #126 0.05 0.17 N.D. ×0.0003 0 ×0.0003 <td>33</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	33										
Σ 1.2.3.6.7.8-H ₆ CDF 0.05 0.17 N.D. 0 0.0025 J 1.2.3.7.8.9-H ₆ CDF 0.06 0.21 N.D. 0 0.003 Z 2.3.4.6.7.8-H ₆ CDF 0.03 0.10 N.D. - - H ₆ CDFs 0.03 0.10 N.D. - - - 1.2.3.4.6.7.8-H ₇ CDF 0.06 0.21 N.D. - - - 1.2.3.4.7.8.9-H ₇ CDF 0.05 0.17 N.D. - - - H ₇ CDFs 0.05 0.17 N.D. - - - - O ₈ CDF 0.05 0.17 N.D. - - - - - - - - 0.011 0.0021 0.0003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.000003 0.000003 0.00003 0.00003		-	H.CDF					× 0.1	n	× 0.1	0.0015
J 1,2,3,7,8,9 H ₆ CDF 0.06 0.21 N.D. 0 0.003 Z 2,3,4,6,7,8 H ₆ CDF 0.03 0.10 N.D. 0 0.0015 H ₆ CDFs 0.03 0.10 N.D. ~ ~ ~ L2,3,4,6,7,8 H ₇ CDF 0.06 0.21 N.D. ~ ~ ~ H ₇ CDFs 0.05 0.17 N.D. ~ ~ ~ ~ O _S CDF 0.05 0.17 N.D. ~ ~ ~ ~ ~ Total PCDFs 0.05 0.17 N.D. ~ 0.00011 0.055 3,3',4,4'-T ₄ CB #77 0.04 0.15 0.69 ×0.0001 0.00069 ×0.0001 0.00069 3,3',4,4',5-T ₄ CB #81 0.05 0.17 N.D. ×0.0003 0 ×0.0003 0.000079 0.000079 3,3',4,4',5-T ₄ CB #81 0.05 0.17 N.D. ×0.0003 0 ×0.0001 0.000069 ×0.00003			116001						-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											— U.UU13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•						× 0.01	0	× 0.01	0.0003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_								-		
O₂CDF 0.05 0.17 N.D. ×0.0003 0 ×0.0003 0.0000075 Total PCDFs - - N.D. 0 0.0018 Total PCDDs+PCDFs - - 0.57 0.00011 0.055 3,3',4,4'-T₄CB #77 0.04 0.15 0.69 ×0.0001 0.00069 ×0.0001 0.00069 3,4,4',5-T₄CB #81 0.05 0.17 N.D. ×0.0003 0 ×0.0003 0.000075 3,3',4,4',5-T₄CB #126 0.05 0.15 N.D. ×0.1 0 ×0.1 0.0025 3,3',4,4',5-T₄CB #169 0.07 0.22 N.D. ×0.03 0 ×0.03 0.00105 C Non-ortho PCBs - - 0.69 0.000069 0.0036 0 2/3,4,4',5-P₃CB #118 0.03 0.12 3.0 ×0.00003 0 ×0.0003 0.000001 0.00001 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003									U		0.00025
Total PCDFs - - N.D. 0.0000073 Total PCDDs+PCDFs - - 0.57 0.00011 0.055 3,3',4,4'-T₄CB #77 0.04 0.15 0.69 ×0.0001 0.00069 ×0.0001 0.000069 3,4,4',5-T₄CB #81 0.05 0.17 N.D. ×0.0003 0 ×0.0003 0.0000075 3,3',4,4',5-T₃GB #126 0.05 0.15 N.D. ×0.1 0 ×0.0 0.00025 3,3',4,4',5,5'-H₀CB #169 0.07 0.22 N.D. ×0.03 0 ×0.03 0.00105 C Non-ortho PCBs - - 0.69 0.00069 0.00069 0.0036 o 2',3,4,4',5-P₅CB #123 0.04 0.15 (0.04) ×0.00003 0 ×0.0003 0.000001 p 2,3,3',4,4',5-P₅CB #118 0.03 0.12 3.0 ×0.00003 0.000090 ×0.00003 0.000090 p 2,3,3',4,4',5-P₅CB #114 0.06 0.20 (0.08 <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>× 0.0003</td> <td></td> <td>× 0.0003</td> <td>0.0000075</td>		,						× 0.0003		× 0.0003	0.0000075
Total PCDDs+PCDFs - - 0.57 0.00011 0.055 3,3',4,4'-T₄CB #77 0.04 0.15 0.69 ×0.0001 0.00069 ×0.0001 0.00069 3,4,4',5-T₄CB #81 0.05 0.17 N.D. ×0.0003 0 ×0.0003 0.0000075 3,3',4,4',5-T₄CB #126 0.05 0.15 N.D. ×0.1 0 ×0.1 0.0025 3,3',4,4',5-T₄CB #169 0.07 0.22 N.D. ×0.03 0 ×0.03 0.00105 C Non-ortho PCBs - - 0.69 0.000069 0.0036 0.00003 0.00003 0.00003 0.00003 0.00003 0.000003		0						77 0.0000		77 0.0000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-						
3,3,4,4,5-T ₄ CB			.,	-				X 0 0001		X 0.0001	
3,3',4,4',5-P ₅ CB											
3,3',4,4',5'-H ₆ CB											
C Non-ortho PCBs		•									
$\begin{array}{c} \text{o} \\ \text{c} \\ $	l _		#169	0.07	0.22			^ U.U3		^ U.U3	
2,3,4,4',5-P ₅ CB #118				-	-			× 0.00000		× 0.00000	
P 2,3,3',4,4'-P ₅ CB #105 0.04 0.13 1.0 ×0.00003 0.00003 ×0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.0000024 0.00003 0.000003 0.000003 0.000003 0.000003 0.000003 0.0000003 0.0000003 0.00000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.00000003 0.0000003 0.0000003 0.00000000	0					-)				
C 2,3,4,4',5-P ₅ CB #114 0.06 0.20 (0.08) ×0.00003 0.0000024 B 2,3',4,4',5,5'-H ₆ CB #167 0.07 0.22 0.24 ×0.00003 0.0000072 ×0.00003 0.0000072 z 2,3,3',4,4',5-H ₆ CB #156 0.05 0.16 0.45 ×0.0003 0.0000135 ×0.00003 0.0000135 2,3,3',4,4',5'-H ₆ CB #157 0.06 0.21 N.D. ×0.00003 0 ×0.00003 0.0000099 2,3,3',4,4',5,5'-H ₇ CB #189 0.05 0.15 N.D. ×0.00003 0 ×0.00003 0.0000099 Mono-ortho PCBs 4.9 0.00014 0.00015 Total Co-PCBs 5.5 0.00021 0.0038					0.12						
B 2,3',4,4',5,5'-H ₆ CB #167 0.07 0.22 0.24 ×0.00003 0.0000072 ×0.00003 0.0000072 s 2,3,3',4,4',5,5'-H ₆ CB #156 0.05 0.16 0.45 ×0.00003 0.0000135 ×0.00003 0.0000135 2,3,3',4,4',5'-H ₆ CB #157 0.06 0.21 N.D. ×0.00003 0 ×0.00003 0.0000009 2,3,3',4,4',5,5'-H ₇ CB #189 0.05 0.15 N.D. ×0.00003 0 ×0.00003 0.0000009 Mono-ortho PCBs 4.9 0.00014 0.00015 Total Co-PCBs 5.5 0.00021 0.0038		•									
s 2.5,3,4,4,5-H ₆ CB #157 0.07 0.22 0.24 0.00003 0.0000135 ×0.00003 0.0000135 2.3,3,4,4,5-H ₆ CB #157 0.06 0.21 N.D. ×0.00003 0 ×0.00003 0.00001035 2.3,3,4,4,5-H ₆ CB #157 0.06 0.21 N.D. ×0.00003 0 ×0.00003 0.0000009 2.3,3,4,4,5-H ₇ CB #189 0.05 0.15 N.D. ×0.00003 0 ×0.00003 0.00000075 Mono-ortho PCBs - - 4.9 0.00014 0.00015 Total Co-PCBs - - 5.5 0.00021 0.0038				0.06	0.20)				
2,3,3',4,4',5'-H ₆ CB	В	•		0.07		0.24					0.0000072
2.3,3',4,4',5,5'-H ₇ CB #189 0.05 0.15 N.D. ×0.00003 0 ×0.00003 0.00000075 Mono-ortho PCBs - - 4.9 0.00014 0.00015 Total Co-PCBs - - 5.5 0.00021 0.0038	s			0.05	0.16	0.45			0.0000135		0.0000135
Mono-ortho PCBs			#157	0.06	0.21	N.D.			0		0.0000009
Total Co-PCBs 5.5 0.00021 0.0038		2,3,3',4,4',5,5'-H ₇ CB	#189	0.05	0.15	N.D.		× 0.00003	0	× 0.00003	0.00000075
		Mono-ortho PCBs		_	_	4.9			0.00014		0.00015
Total PCDDs+PCDFs+Co-PCBs 6.1 0.00032 0.059	L_	Total Co-PCBs		_	_	5.5			0.00021		0.0038
	То	tal PCDDs+PCDFs+Co	-PCBs	_	_	6.1			0.00032		0.059

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-T₄CDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量*1:定量下限未満の実測濃度を0として算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、 表示上の数値を合計しても一致しない場合がある。

表 4-4-1-3 ダイオキシン類調査結果(水質: St. 2)

	試料名		St.2		試料如	某体		水質		
	採取日		2014年8月5	日	試料量	(L)			34.1	
							,	毒性	生当量	
			検出下限値	定量下限値	実測濃度		WHO-	ΓΕF,2006 *1	WHO-	TEF,2006 *2
			pg/L	pg/L	pg/L		pg	-TEQ/L	pg	TEQ/L
	1,3,6,8-T ₄ CDD		0.03	0.11	(0.07)		_		_
	1,3,7,9-T₄CDD		0.03	0.11	N.D.			_		_
	2,3,7,8-T ₄ CDD		0.03	0.11	N.D.		×1	0	×1	0.015
	T₄CDDs		0.03	0.11	0.15			_		_
ダ	1,2,3,7,8-P ₅ CDD		0.03	0.11	N.D.		×1	0	×1	0.015
1	P₅CDDs		0.03	0.11	N.D.			-		_
オ	1,2,3,4,7,8-H ₆ CDD		0.05	0.17	N.D.		× 0.1	0	× 0.1	0.0025
キ	1,2,3,6,7,8-H ₆ CDD		0.05	0.18	N.D.			0		0.0025
シ	1,2,3,7,8,9-H ₆ CDD		0.03	0.09	N.D.			0		0.0015
レ	H₀CDDs		0.03	0.09	N.D.			-		_
	1,2,3,4,6,7,8-H ₇ CDD		0.06	0.19	(0.08)	× 0.01	0	× 0.01	0.0008
	H ₇ CDDs		0.06	0.19	(0.16)		_		_
	O ₈ CDD		0.04	0.15	0.61		× 0.0003	0.000183	× 0.0003	0.000183
	Total PCDDs		_	_	0.92			0.00018		0.037
	1,2,7,8-T₄CDF		0.04	0.14	N.D.			_		_
	2,3,7,8-T₄CDF		0.04	0.14	N.D.		× 0.1	0	× 0.1	0.002
	T₄CDFs		0.04	0.14	N.D.			_		_
	1,2,3,7,8+1,2,3,4,8-P ₅ C	DF	0.05	0.17	N.D.		× 0.03	0	× 0.03	0.00075
	2,3,4,7,8-P ₅ CDF		0.04	0.13	N.D.		× 0.3	0	× 0.3	0.006
ジ	P₅CDFs		0.04	0.13	N.D.			_		_
ベ	1,2,3,4,7,8+1,2,3,4,7,9-	H ₆ CDF	0.03	0.10	N.D.		× 0.1	0	× 0.1	0.0015
レ	1,2,3,6,7,8-H ₆ CDF		0.05	0.17	N.D.			0		0.0025
ゾ	1,2,3,7,8,9-H ₆ CDF		0.06	0.21	N.D.			0		0.003
フ	2,3,4,6,7,8-H ₆ CDF		0.03	0.10	N.D.			0		0.0015
	H ₆ CDFs		0.03	0.10	N.D.			_		_
レ	1,2,3,4,6,7,8-H ₇ CDF		0.06	0.21	N.D.		× 0.01	0	× 0.01	0.0003
	1,2,3,4,7,8,9-H ₇ CDF		0.05	0.17	N.D.			0		0.00025
	H ₇ CDFs		0.05	0.17	N.D.			_		_
	O ₈ CDF		0.05	0.17	N.D.		× 0.0003	0	× 0.0003	0.0000075
	Total PCDFs		-	-	N.D.			0		0.018
L	Total PCDDs+PCDFs		-	-	0.92			0.00018		0.055
	3,3',4,4'-T ₄ CB	#77	0.05	0.15	0.79		× 0.0001	0.000079	× 0.0001	0.000079
	3,4,4',5-T ₄ CB	#81	0.05	0.17	N.D.		× 0.0003	0	× 0.0003	0.0000075
	3,3',4,4',5-P ₅ CB	#126	0.05	0.16	N.D.		× 0.1	0	× 0.1	0.0025
	3,3',4,4',5,5'-H ₆ CB	#169	0.07	0.22	N.D.		× 0.03	0	× 0.03	0.00105
	Non-ortho PCBs		-	-	0.79		V 0.00000	0.000079	× 0.00000	0.0036
0	2',3,4,4',5-P ₅ CB	#123	0.05	0.15	(0.07)	× 0.00003	0	× 0.00003	0.0000021
	2,3',4,4',5-P ₅ CB	#118	0.04	0.12	3.8		× 0.00003	0.000114	× 0.00003	0.000114
	2,3,3',4,4'-P ₅ CB	#105	0.04	0.14	1.4		× 0.00003	0.000042	× 0.00003	0.000042
C	2,3,4,4',5-P ₅ CB	#114	0.06	0.20	(0.10)	× 0.00003 × 0.00003	0	× 0.00003 × 0.00003	0.0000030
	2,3',4,4',5,5'-H ₆ CB	#167	0.07	0.23	0.26		× 0.00003	0.0000078	× 0.00003	0.0000078
s	2,3,3',4,4',5-H ₆ CB	#156	0.05	0.17	0.48			0.0000144		0.0000144
	2,3,3',4,4',5'-H ₆ CB	#157	0.06	0.21	(0.07)	× 0.00003 × 0.00003	0	× 0.00003 × 0.00003	0.0000021
	2,3,3',4,4',5,5'-H ₇ CB	#189	0.05	0.16	(0.07)	^ 0.00003	0	^ U.UUUU3	0.0000021
	Mono-ortho PCBs		-	_	6.3			0.00018		0.00019
<u> </u>	Total Co-PCBs	D65	-	_	7.0			0.00026		0.0038
	tal PCDDs+PCDFs+Co 長性当景とけ憲性等価係		_		8.0			0.00044		0.059

^{1.} 毒性当量とは毒性等価係数を用いて、2.3.7.8-T4CDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量 * 1: 定量下限未満の実測濃度をOとして算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、 表示上の数値を合計しても一致しない場合がある。

表 4-4-1-4 ダイオキシン類調査結果 (水質: St. 3)

	試料名		St.3			試料如	某体			水質	
	採取日		2014年8月5	日		試料量	(L)			34.1	
$\overline{}$									毒性当量		
			検出下限値	定量下限値		実測濃度					
						7 (1/1/1/L/L)		WHO-	TEF,2006 *1	WHO-	TEF,2006 *2
			pg/L	pg/L		pg/L		nø	-TEQ/L	l no	-TEQ/L
	1,3,6,8-T ₄ CDD	_	0.03	0.11	(0.05)	PE		PE	
	1,3,7,9-T₄CDD		0.03	0.11	(0.03 N.D.	,		_		_
	2,3,7,8-T ₄ CDD		0.03	0.11		N.D.		×1	0	×1	0.015
	T ₄ CDDs		0.03	0.11	(0.05)				
ダ	1,2,3,7,8-P ₅ CDD		0.03	0.11		N.D.	,	×1	0	×1	0.015
	P ₅ CDDs		0.03	0.11		N.D.					
 	1,2,3,4,7,8-H ₆ CDD		0.05	0.17		N.D.		× 0.1	0	× 0.1	0.0025
7	1,2,3,6,7,8-H ₆ CDD		0.05	0.17		N.D.			0		0.0025
シ	1,2,3,7,8,9-H ₆ CDD		0.03	0.09		N.D.			0		0.0025
	H ₆ CDDs		0.03	0.09		N.D.					
_	1,2,3,4,6,7,8-H ₇ CDD		0.03	0.09		N.D.		× 0.01	0	× 0.01	0.0003
	H ₇ CDDs		0.06	0.19	(0.08)		_		
	O ₈ CDD		0.04	0.19	(0.08	,	×0.0003	0.000120	× 0.0003	0.000120
	Total PCDDs		0.04	U.13 —		0.40			0.000120		0.000120
	1,2,7,8-T₄CDF		0.04	0.14		N.D.			<u>0.00012</u>		
	2,3,7,8-T ₄ CDF		0.04	0.14		N.D.		× 0.1	0	× 0.1	0.002
	T ₄ CDFs		4								0.002
	1,2,3,7,8+1,2,3,4,8-P ₅ C	יחב	0.04 0.05	0.14 0.17		N.D.		×0.03	0	× 0.03	0.00075
		DF	0.05	0.17		N.D. N.D.		× 0.3	0	× 0.3	0.00075
33	2,3,4,7,8-P ₅ CDF P ₅ CDFs										U.UU0
l -	1,2,3,4,7,8+1,2,3,4,7,9-	H ODE	0.04	0.13		N.D.		× 0.1	0	× 0.1	0.0015
	1,2,3,6,7,8-H ₆ CDF	H ₆ CDF	0.03	0.10		N.D.			-		0.0015
	· · · · · · · · · · · · · · · · · · ·		0.05	0.17		N.D.			0		0.0025
	1,2,3,7,8,9-H ₆ CDF		0.06	0.21		N.D.			0		
	2,3,4,6,7,8-H ₆ CDF		0.03	0.10		N.D.			0		0.0015
	H ₆ CDFs		0.03	0.10		N.D.		× 0.01		× 0.01	
レ	1,2,3,4,6,7,8-H ₇ CDF 1,2,3,4,7,8,9-H ₇ CDF		0.06	0.21		N.D.			0		0.0003
			0.05	0.17		N.D.			0		0.00025
	H ₇ CDFs		0.05	0.17		N.D.		×0.0003		× 0.0003	0.0000075
	O ₈ CDF		0.05	0.17		N.D.			0		0.0000075
	Total PCDFs		_	_		N.D.			0		0.018
_	Total PCDDs+PCDFs	#77	0.04	0.15		0.53		× 0.0001	0.00012	× 0.0001	0.055
	3,3',4,4'-T ₄ CB	#77	0.04	0.15		0.81		× 0.0003	0.000081	× 0.0003	0.000081
	3,4,4',5-T ₄ CB	#81	0.05	0.17		N.D.		× 0.1	0	× 0.1	0.0000075
	3,3',4,4',5-P ₅ CB 3,3',4,4',5,5'-H ₆ CB	#126	0.05	0.16		N.D.		× 0.03	0	× 0.03	0.0025
_	0	#169	0.07	0.22		N.D.			0 000001		0.00105
	Non-ortho PCBs	#100	- 0.0F	0.15	1	0.81	١	× 0.00003	0.000081	× 0.00003	0.0036
0	2',3,4,4',5-P ₅ CB	#123	0.05	0.15	(0.06)	× 0.00003	0 000100	× 0.00003	0.0000018
Ľ	2,3',4,4',5-P ₅ CB	#118	0.04	0.12		3.6		× 0.00003	0.000108	× 0.00003	0.000108
P	2,3,3',4,4'-P ₅ CB	#105	0.04	0.14	/	1.4	`	× 0.00003	0.000042	× 0.00003	0.000042
C	2,3,4,4',5-P ₅ CB	#114	0.06	0.20	(0.09)	× 0.00003	0 0000075	× 0.00003	0.0000027
В	2,3',4,4',5,5'-H ₆ CB	#167	0.07	0.23		0.25		× 0.00003	0.0000075	× 0.00003	0.0000075
S	2,3,3',4,4',5-H ₆ CB	#156	0.05	0.17		0.47		× 0.00003	0.0000141	× 0.00003	0.0000141
	2,3,3',4,4',5'-H ₆ CB	#157	0.06	0.21	1	N.D.	`	× 0.00003	0	× 0.00003	0.0000009
	2,3,3',4,4',5,5'-H ₇ CB	#189	0.05	0.15	(0.07)		0 00017		0.0000021
	Mono-ortho PCBs		-	_		5.9			0.00017		0.00018
ا	Total Co-PCBs	DOD	-	_		6.7			0.00025	-	0.0038
_	tal PCDDs+PCDFs+Co 毒性当量とは毒性等価係		T 0070		h4-1-	7.2	· +	11 취 티크	0.00037		0.059

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-T₄CDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量 * 1: 定量下限未満の実測濃度をOとして算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、 表示上の数値を合計しても一致しない場合がある。

表 4-4-1-5 ダイオキシン類調査結果(水質: St. 4)

	試料名		St.4			試料如	某体			水質	
	採取日		2014年8月5	日		試料量	(L)			33.9	
$\overline{}$						H-A-LIT	. (=/		毒性当量		
			検出下限値	定量下限值		実測濃度					
								WHO-	ΓEF,2006 *1	WHO-	ΓEF,2006 *2
	`	\	pg/L	pg/L		pg/L		pg	-TEQ/L	pg	-TEQ/L
	1,3,6,8-T ₄ CDD		0.03	0.11		0.12			_		_
	1,3,7,9-T₄CDD		0.03	0.11		0.13			_		_
	2,3,7,8-T₄CDD		0.03	0.11		N.D.		×1	0	× 1	0.015
	T ₄ CDDs		0.03	0.11		0.25			_		_
ダ	1,2,3,7,8-P ₅ CDD		0.03	0.11		N.D.		×1	0	×1	0.015
1	P₅CDDs		0.03	0.11	(0.09)		_		_
オ	1,2,3,4,7,8−H ₆ CDD		0.05	0.17		N.D.		× 0.1	0	× 0.1	0.0025
キ	1,2,3,6,7,8-H ₆ CDD		0.05	0.18		N.D.			0		0.0025
シ	1,2,3,7,8,9-H ₆ CDD		0.03	0.10		N.D.			0		0.0015
レ	H ₆ CDDs		0.03	0.10		N.D.			_		_
	1,2,3,4,6,7,8-H ₇ CDD		0.06	0.19	(0.13)	× 0.01	0	× 0.01	0.0013
	H ₇ CDDs		0.06	0.19		0.31		× 0.0003	_	× 0.0003	_
	O ₈ CDD		0.04	0.15		1.6		× 0.0003	0.00048	× 0.0003	0.00048
	Total PCDDs		_			2.3			0.00048		0.038
	1,2,7,8-T₄CDF		0.04	0.14		N.D.		× 0.1	_	× 0.1	_
	2,3,7,8-T ₄ CDF		0.04	0.14		N.D.		~ 0.1	0	~ 0.1	0.002
	T ₄ CDFs		0.04	0.14		N.D.		× 0.03		× 0.03	_
	1,2,3,7,8+1,2,3,4,8-P ₅ C	;DF	0.05	0.17		N.D.		× 0.3	0	× 0.3	0.00075
	2,3,4,7,8-P ₅ CDF		0.04	0.13		N.D.			0		0.006
٠.	P ₅ CDFs	LLODE	0.04	0.13		N.D.		× 0.1		× 0.1	0.0015
	1,2,3,4,7,8+1,2,3,4,7,9- 1,2,3,6,7,8-H ₆ CDF	H ₆ CDF	0.03	0.10		N.D.			0		0.0015 0.0025
			0.05	0.17		N.D.			0		0.0025
	1,2,3,7,8,9-H ₆ CDF 2,3,4,6,7,8-H ₆ CDF		0.06	0.21		N.D.			0		
	H ₆ CDFs		0.03 0.03	0.10 0.10		N.D. N.D.			0		0.0015
	1,2,3,4,6,7,8-H ₇ CDF		0.03	0.10		N.D.		× 0.01	0	× 0.01	0.0003
_	1,2,3,4,7,8,9-H ₇ CDF		0.00	0.22		N.D.			0		0.0003
	H ₇ CDFs		0.05	0.18		N.D.					— —
	O _s CDF		0.05	0.17		N.D.		× 0.0003	0	× 0.0003	0.0000075
	Total PCDFs		-	-		N.D.			0		0.0000073
	Total PCDDs+PCDFs		-	_		2.3			0.00048		0.056
	3,3',4,4'-T₄CB	#77	0.05	0.15		0.88		× 0.0001	0.000048	× 0.0001	0.000088
	3,4,4',5-T ₄ CB	#81	0.05	0.17		N.D.		×0.0003	0.000000	× 0.0003	0.0000075
	3,3',4,4',5-P ₅ CB	#126	0.05	0.16	(0.06)	× 0.1	0	× 0.1	0.006
	3,3',4,4',5,5'-H ₆ CB	#169	0.07	0.22		N.D.		× 0.03	0	× 0.03	0.00105
С	Non-ortho PCBs		-	_		0.94			0.000088		0.0071
0	2',3,4,4',5-P ₅ CB	#123	0.05	0.15	(0.12)	× 0.00003	0	× 0.00003	0.0000036
	2,3',4,4',5-P ₅ CB	#118	0.04	0.12		6.1		×0.00003	0.000183	× 0.00003	0.000183
Р	2,3,3',4,4'-P ₅ CB	#105	0.04	0.14		2.2		×0.00003	0.000066	× 0.00003	0.000066
С	2,3,4,4',5-P ₅ CB	#114	0.06	0.20	(0.16)	× 0.00003	0	× 0.00003	0.0000048
В	2,3',4,4',5,5'-H ₆ CB	#167	0.07	0.23		0.37		× 0.00003	0.0000111	× 0.00003	0.0000111
s	2,3,3',4,4',5-H ₆ CB	#156	0.05	0.17		0.66		× 0.00003	0.0000198	× 0.00003	0.0000198
	2,3,3',4,4',5'-H ₆ CB	#157	0.06	0.21	(0.09)	× 0.00003	0	× 0.00003	0.0000027
1	2,3,3',4,4',5,5'-H ₇ CB	#189	0.05	0.16	(0.07)	×0.00003	0	× 0.00003	0.0000021
	Mono-ortho PCBs		-	-		9.9			0.00028		0.00029
	Total Co-PCBs		-	_		11			0.00037	<u> </u>	0.0074
_	tal PCDDs+PCDFs+Co 毒性当量とは毒性等価係		-	-		13			0.00085		0.064

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-T₄CDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量*1:定量下限未満の実測濃度を0として算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、 表示上の数値を合計しても一致しない場合がある。

表 4-4-1-6 ダイオキシン類調査結果 (水質: St.S-1)

	試料名		St.S-1			試料如	某体			水質	
	採取日		2014年8月5	日		試料量	t (L)			34.8	
$\overline{}$									毒性当量		
			検出下限値	定量下限值		実測濃度					
								WHO-	ΓEF,2006 *1	WHO-	TEF,2006 *2
			pg/L	pg/L		pg/L		pg	-TEQ/L	pg	-TEQ/L
	1,3,6,8-T₄CDD		0.03	0.11	(0.04)		_		_
	1,3,7,9-T₄CDD		0.03	0.11		N.D.			_		_
	2,3,7,8-T₄CDD		0.03	0.11		N.D.		×1	0	×1	0.015
	T ₄ CDDs		0.03	0.11	(0.07)		-		-
ダ	1,2,3,7,8-P ₅ CDD		0.03	0.11		N.D.		×1	0	×1	0.015
イ	P₅CDDs		0.03	0.11		N.D.			_		_
オ	1,2,3,4,7,8-H ₆ CDD		0.05	0.17		N.D.		× 0.1	0	× 0.1	0.0025
キ	1,2,3,6,7,8-H ₆ CDD		0.05	0.18		N.D.			0		0.0025
シ	1,2,3,7,8,9-H ₆ CDD		0.03	0.09		N.D.			0		0.0015
ン	H ₆ CDDs		0.03	0.09		N.D.			_		_
l	1,2,3,4,6,7,8-H ₇ CDD		0.06	0.19		N.D.		× 0.01	0	× 0.01	0.0003
	H ₇ CDDs		0.06	0.19		N.D.		W 0.0000	_	W00000	_
	O ₈ CDD		0.04	0.15		N.D.		× 0.0003	0	× 0.0003	0.000006
	Total PCDDs		_	_		0.07			0		0.037
	1,2,7,8-T₄CDF		0.04	0.14		N.D.		V01	_	× 0.1	_
	2,3,7,8-T ₄ CDF		0.04	0.14		N.D.		× 0.1	0	× 0.1	0.002
	T ₄ CDFs		0.04	0.14		N.D.		¥0.00		× 0.03	
	1,2,3,7,8+1,2,3,4,8-P ₅ C	DDF	0.05	0.16		N.D.		× 0.03	0		0.00075
١	2,3,4,7,8-P ₅ CDF		0.04	0.13		N.D.		× 0.3	0	× 0.3	0.006
	P ₅ CDFs		0.04	0.13		N.D.		× 0.1		× 0.1	
	1,2,3,4,7,8+1,2,3,4,7,9-	H ₆ CDF	0.03	0.10		N.D.		× 0.1	0	× 0.1	0.0015
	1,2,3,6,7,8-H ₆ CDF		0.05	0.16		N.D.			0		0.0025
	1,2,3,7,8,9-H ₆ CDF		0.06	0.21		N.D.			0		0.003
	2,3,4,6,7,8-H ₆ CDF		0.03	0.10		N.D.			0		0.0015
	H ₆ CDFs		0.03	0.10		N.D.		× 0.01		× 0.01	
ン	1,2,3,4,6,7,8-H ₇ CDF 1,2,3,4,7,8,9-H ₇ CDF		0.06	0.21		N.D.		7.0.01	0	7.0.01	0.0003
			0.05	0.17		N.D.			0		0.00025
	H₁CDFs O₃CDF		0.05	0.17		N.D.		× 0.0003	0	× 0.0003	0.0000075
	Total PCDFs		0.05	0.17		N.D. N.D.			0		0.0000075 0.018
	Total PCDPs Total PCDDs+PCDFs		_		(0.07)		0		0.018
	3,3',4,4'-T₄CB	#77	0.04	0.15	(0.65)	× 0.0001	0.000065	× 0.0001	0.00065
	3,4,4',5-T ₄ CB	#81	0.04	0.13		N.D.		× 0.0003	0.000003	× 0.0003	0.000003
	3,3',4,4',5-P ₅ CB	#126	0.05	0.17		N.D.		× 0.1	0	× 0.1	0.000073
	3,3',4,4',5,5'-H ₆ CB	#169	0.06	0.13		N.D.		× 0.03	0	× 0.03	0.0023
c	Non-ortho PCBs		-	-		0.65			0.000065		0.0035
0	2',3,4,4',5-P ₅ CB	#123	0.04	0.15	(0.06)	×0.00003	0	× 0.00003	0.0000018
	2,3',4,4',5-P ₅ CB	#118	0.03	0.12		3.2	•	× 0.00003	0.000096	× 0.00003	0.000096
P	2,3,3',4,4'-P ₅ CB	#105	0.04	0.13		1.1		× 0.00003	0.000033	× 0.00003	0.000033
С	2,3,4,4',5-P ₅ CB	#114	0.06	0.19	(0.07)	× 0.00003	0	× 0.00003	0.0000021
В	2,3',4,4',5,5'-H ₆ CB	#167	0.07	0.22		0.23		×0.00003	0.0000069	× 0.00003	0.0000069
s	2,3,3',4,4',5-H ₆ CB	#156	0.05	0.16		0.41		×0.00003	0.0000123	× 0.00003	0.0000123
	2,3,3',4,4',5'-H ₆ CB	#157	0.06	0.21		N.D.		× 0.00003	0	× 0.00003	0.0000009
	2,3,3',4,4',5,5'-H ₇ CB	#189	0.05	0.15	(0.06)	× 0.00003	0	× 0.00003	0.0000018
	Mono-ortho PCBs		-	_		5.2			0.00015		0.00015
	Total Co-PCBs		-	_		5.8			0.00021		0.0036
_	tal PCDDs+PCDFs+Co 毒性当量とは毒性等価係		-			5.9			0.00021		0.058

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-T₄CDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量*1:定量下限未満の実測濃度を0として算出する。

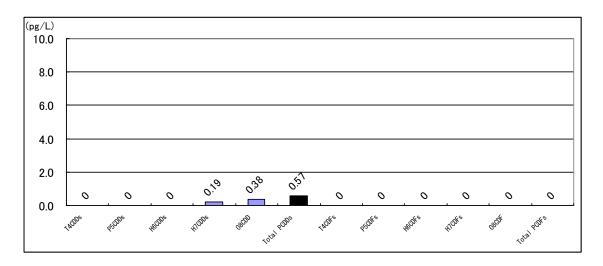
^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、 表示上の数値を合計しても一致しない場合がある。

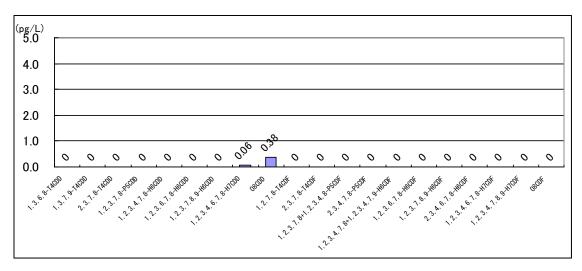
表 4-4-1-7 ダイオキシン類調査結果 (水質: St.S-2)

	試料名		St.S-2		試料媒体	<u> </u>		水質	
	採取日		2014年8月5	日	試料量(L)		35.2	
$\overline{}$							毒性	生当量	
			検出下限値	定量下限値	実測濃度	WHO-	TEF,2006 *1		TEF,2006 *2
			pg/L	pg/L	pg/L	р	g-TEQ/L	pg	g-TEQ/L
	1,3,6,8-T ₄ CDD		0.03	0.11	(0.10)	_		_
	1,3,7,9-T₄CDD		0.03	0.11	N.D.		_		_
	2,3,7,8-T₄CDD		0.03	0.11	N.D.	× 1	0	× 1	0.015
	T₄CDDs		0.03	0.11	0.21		_		_
ダ	1,2,3,7,8-P ₅ CDD		0.03	0.11	N.D.	×1	0	×1	0.015
	P₅CDDs		0.03	0.11	N.D.		_		_
オ	1,2,3,4,7,8-H ₆ CDD		0.05	0.16	N.D.	× 0.1	0	× 0.1	0.0025
キ	1,2,3,6,7,8-H ₆ CDD		0.05	0.18	N.D.		0		0.0025
シ	1,2,3,7,8,9-H ₆ CDD		0.03	0.09	N.D.		0		0.0015
レ	H ₆ CDDs		0.03	0.09	0.11		_		_
	1,2,3,4,6,7,8-H ₇ CDD		0.06	0.19	N.D.	× 0.01	0	× 0.01	0.0003
	H ₇ CDDs		0.06	0.19	N.D.		_		_
	O ₈ CDD		0.04	0.14	0.35	× 0.0003	0.000105	× 0.0003	0.000105
	Total PCDDs		_	_	0.68		0.00011		0.037
	1,2,7,8-T₄CDF		0.04	0.14	N.D.	W01	_		_
	2,3,7,8-T ₄ CDF		0.04	0.14	N.D.	× 0.1	0	× 0.1	0.002
	T ₄ CDFs		0.04	0.14	N.D.	× 0.03		× 0.03	
	1,2,3,7,8+1,2,3,4,8-P ₅ C	DDF	0.05	0.16	N.D.		0	× 0.03	0.00075
	2,3,4,7,8-P ₅ CDF		0.04	0.12	N.D.	× 0.3	0	× 0.3	0.006
	P ₅ CDFs		0.04	0.12	N.D.	× 0.1		× 0.1	
	1,2,3,4,7,8+1,2,3,4,7,9-	H ₆ CDF	0.03	0.10	N.D.	× 0.1	0	A 0.1	0.0015
	1,2,3,6,7,8-H ₆ CDF		0.05	0.16	N.D.		0		0.0025
	1,2,3,7,8,9−H ₆ CDF		0.06	0.20	N.D.		0		0.003
	2,3,4,6,7,8-H ₆ CDF		0.03	0.10	N.D.		0		0.0015
	H ₆ CDFs		0.03	0.10	N.D.	× 0.01		× 0.01	
ر ا	1,2,3,4,6,7,8-H ₇ CDF		0.06	0.21	N.D.	7.0.01	0	1.0.01	0.0003
	1,2,3,4,7,8,9-H ₇ CDF		0.05	0.17	N.D.		0		0.00025
	H ₇ CDFs		0.05	0.17	N.D.	× 0.0003		× 0.0003	0.0000075
	O ₈ CDF		0.05 _	0.17	N.D.		0		0.0000075
\vdash	Total PCDFs		_	_	N.D.	1	0.00011	-	0.018
-	Total PCDDs+PCDFs 3,3',4,4'-T₄CB	#77			0.68 0.78	× 0.0001	0.00011	× 0.0001	0.055 0.000078
	3,4,4′,5−T₄CB	#//	0.04 0.05	0.15 0.16	0.78 N.D.	× 0.0003	0.000078	× 0.0003	0.000078
	3,3',4,4',5-P ₅ CB	#126	0.05	0.16	N.D. N.D.	× 0.1	0	× 0.1	0.000075
	3,3',4,4',5,5'-H ₆ CB	#126	0.05	0.15	N.D. N.D.	× 0.03	0	× 0.03	0.0025
c	Non-ortho PCBs	#108	-	-	0.78	1	0.000078		0.0009
	2',3,4,4',5-P ₅ CB	#123	0.04	0.15	(0.07) × 0.00003	0.000078	× 0.00003	0.0000021
ľ	2,3',4,4',5-P ₅ CB	#123	0.04	0.13	4.2	× 0.00003	0.000126	× 0.00003	0.0000021
P	2,3,3',4,4'-P ₅ CB	#105	0.03	0.11	1.4	× 0.00003	0.000120	× 0.00003	0.000120
C	2,3,4,4',5-P ₅ CB	#114	0.04	0.13	(0.10	× 0.00003	0.000042	× 0.00003	0.000042
В	2,3',4,4',5,5'-H ₆ CB	#167	0.07	0.13	0.30	× 0.00003	0.0000090	× 0.00003	0.0000030
_	2,3,3',4,4',5-H ₆ CB	#156	0.07	0.16	0.51	× 0.00003	0.0000030	× 0.00003	0.0000153
	2,3,3',4,4',5'-H ₆ CB	#157	0.03	0.10	(0.07		0.0000133	× 0.00003	0.0000133
	2,3,3',4,4',5,5'-H ₇ CB	#189	0.05	0.15	N.D.	× 0.00003	0	× 0.00003	0.0000021
	Mono-ortho PCBs	π100	-	-	6.7	+	0.00019	1	0.0000073
	Total Co-PCBs		_	_	7.5	+	0.00019	 	0.00020
To	tal PCDDs+PCDFs+Co	-PCRs	_	_	8.1	1	0.00027	 	0.058
					性に換質したもので	1		1	5.500

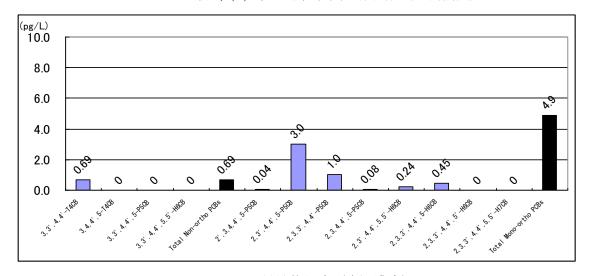
^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-T₄CDDの毒性に換算したものであり、計量対象外である。


^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

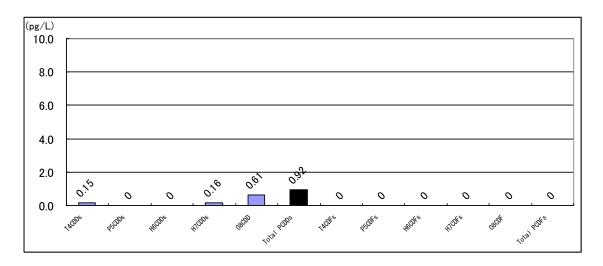
^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。


^{4.} 毒性当量*1:定量下限未満の実測濃度を0として算出する。

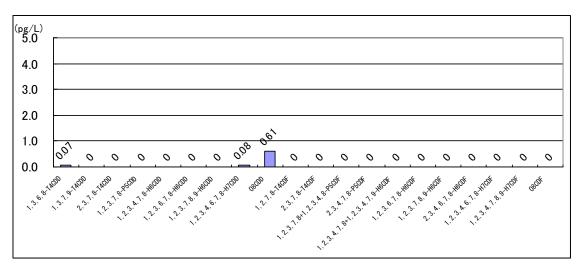
^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。


^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、 表示上の数値を合計しても一致しない場合がある。

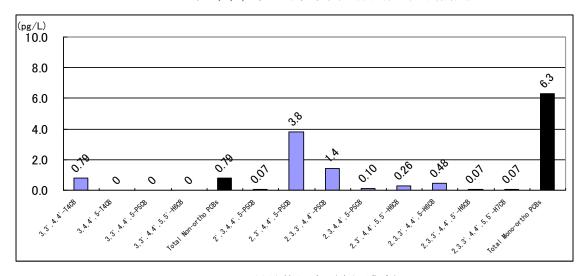
ダイオキシン類同族体組成 (実測濃度)



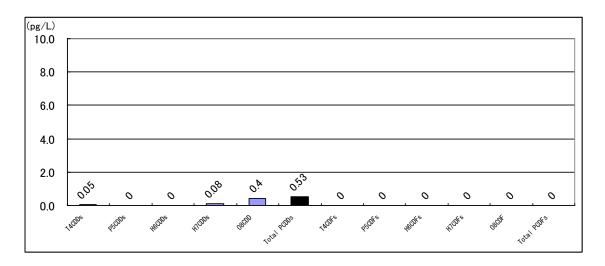
ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)



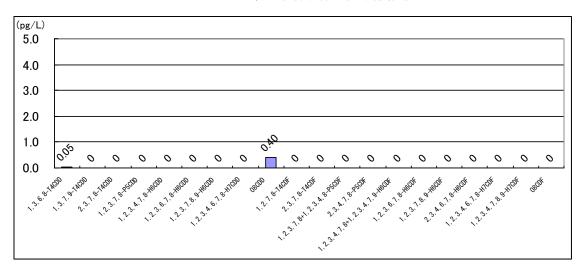
Co-PCBs 異性体組成 (実測濃度)


図4-4-1-1 同族体および異性体の組成(水質:St.1)

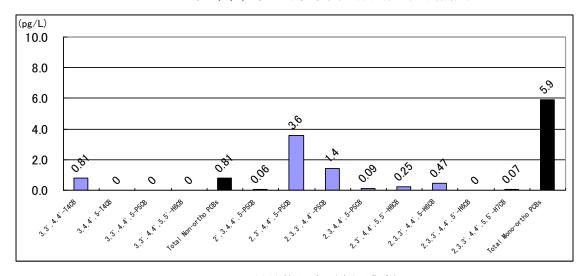
ダイオキシン類同族体組成 (実測濃度)



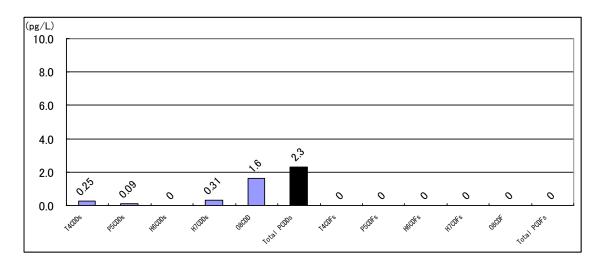
ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)



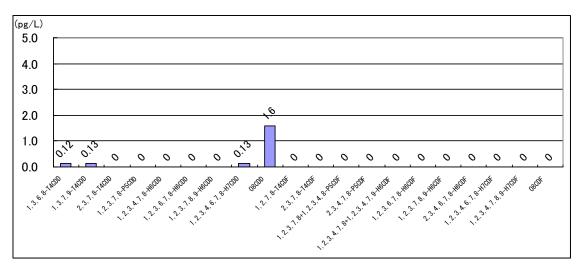
Co-PCBs 異性体組成 (実測濃度)


図4-4-1-2 同族体および異性体の組成(水質:St.2)

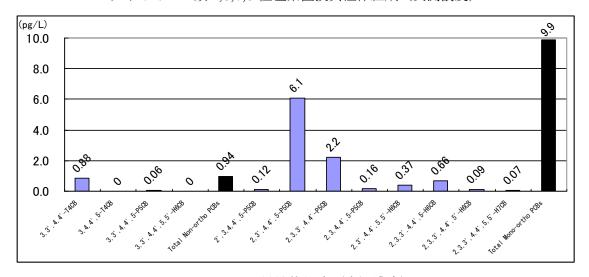
ダイオキシン類同族体組成 (実測濃度)



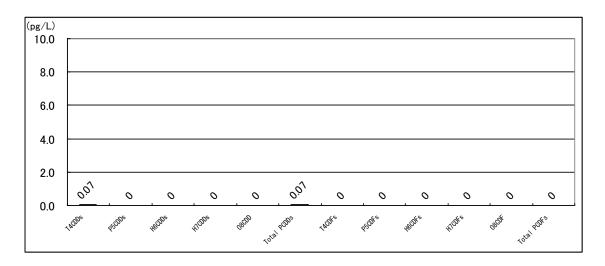
ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)



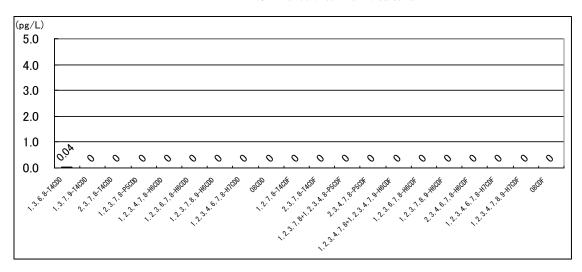
Co-PCBs 異性体組成 (実測濃度)


図4-4-1-3 同族体および異性体の組成(水質:St.3)

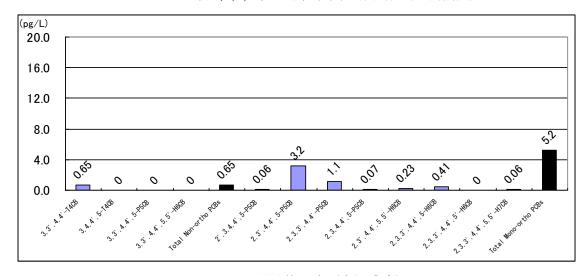
ダイオキシン類同族体組成 (実測濃度)



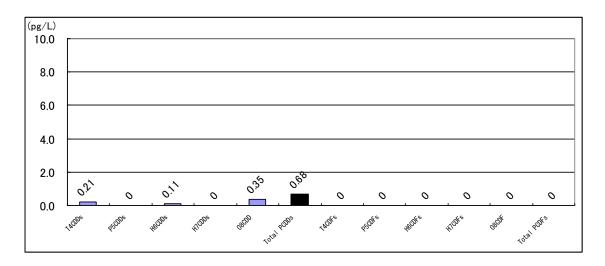
ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)



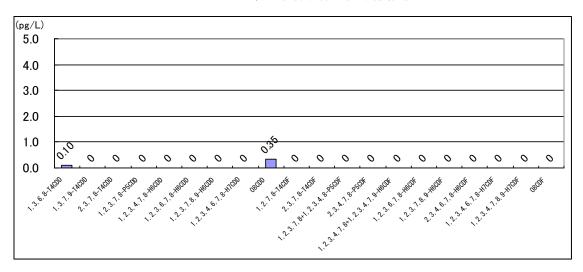
Co-PCBs 異性体組成 (実測濃度)


図4-4-1-4 同族体および異性体の組成(水質:St.4)

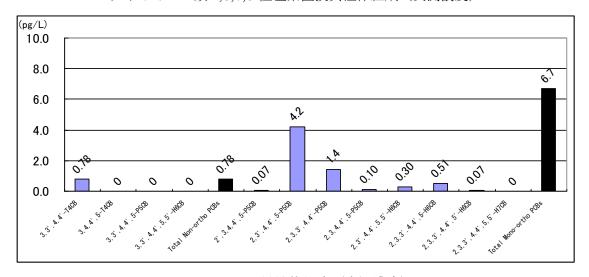
ダイオキシン類同族体組成 (実測濃度)



ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)



Co-PCBs 異性体組成 (実測濃度)


図4-4-1-5 同族体および異性体の組成(水質:St.S-1)

ダイオキシン類同族体組成 (実測濃度)

ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)

Co-PCBs 異性体組成 (実測濃度)

図4-4-1-6 同族体および異性体の組成(水質:St.S-2)

4-4-2 底質調査結果

分析結果概要を表 4-4-2-1、それぞれの異性体および同族体別測定結果を表 4-4-2-2~表 4-4-2-5 に示す。また、異性体および同族体のパターンを図 4-2-1~図 4-4-2-4 に示す。

本調査の結果は、1.0~23pg-TEQ/gであり、各地点とも環境基準を下回っていた。

平成 25 年度「大阪府ダイオキシン類常時監視結果」(巻末参考資料参照)によると、 大阪湾における底質の濃度は $1.0\sim18$ pg-TEQ/g であり、今回の結果はそれらの結果と比較 するとほぼ同じ値であった。

表4-4-2-1 分析結果概要(底質)

試料名	試験項目	実測濃度	毒性等量
		(pg/g-dry)	(pg-TEQ/g)
	PCDDs+PCDFs	2100	5.9
St.1	Co-PCBs	710	0.44
	ダイオキシン類	-	6.4
	PCDDs+PCDFs	1300	3.8
St.2	Co-PCBs	440	0.25
	ダイオキシン類	-	4.1
	PCDDs+PCDFs	290	0.94
St.3	Co-PCBs	120	0.073
	ダイオキシン類	I	1.0
	PCDDs+PCDFs	4900	21
St.4	Co-PCBs	2900	1.5
	ダイオキシン類	-	23

この表は、ダイオキシン類測定結果から一部のデータを抜粋した参考資料である。

毒性等量: 2,3,7,8-T₄CDD 毒性等量を示す。

毒性等価係数は以下の係数を適用した。

PCDDs.PCDFs: WHO/IPCS (2006)

Co-PCBs: WHO/IPCS(2006)

毒性等量は検出下限未満のものは、試料における検出下限の1/2の値を用いて算出したものである。

表 4-4-2-2 ダイオキシン類調査結果(底質:St.1)

試料名 St.1				試料媒体	Z	底質				
	採取日		2014年8月6	日	試料量(8	g)	22.4			
$\overline{}$					<u> </u>	毒性	生当量			
			検出下限値 定量下限値		実測濃度	WHO-	WHO-TEF,2006 *1		WHO-TEF,2006 *2	
			pg/g	pg/g	pg/g	pg	;-TEQ/g	pį	g-TEQ/g	
	1,3,6,8-T₄CDD		0.08	0.26	19		_		_	
	1,3,7,9-T₄CDD		0.08	0.26	11		_		_	
	2,3,7,8-T₄CDD		0.08	0.26	(0.16)	×1	0	×1	0.16	
	T₄CDDs		0.08	0.26	45		-		_	
ダ	1,2,3,7,8-P ₅ CDD		0.1	0.3	1.1	×1	1.1	×1	1.1	
1	P₅CDDs		0.1	0.3	35		_		_	
オ	1,2,3,4,7,8-H ₆ CDD		0.1	0.3	1.8	× 0.1	0.18	× 0.1	0.18	
+	1,2,3,6,7,8-H ₆ CDD		0.08	0.25	3.5		0.35		0.35	
シ	1,2,3,7,8,9-H ₆ CDD		0.1	0.3	5.0		0.50		0.50	
ン	H ₆ CDDs		0.08	0.25	120		_		_	
1	1,2,3,4,6,7,8-H ₇ CDD		0.1	0.3	87	× 0.01	0.87	× 0.01	0.87	
	H ₇ CDDs		0.1	0.3	330				-	
	O ₈ CDD		0.06	0.19	1400	× 0.0003	0.42	× 0.0003	0.42	
L	Total PCDDs		_	_	1900		3.4		3.6	
	1,2,7,8-T₄CDF		0.09	0.30	1.5		_		_	
	2,3,7,8-T₄CDF		0.09	0.30	2.1	× 0.1	0.21	× 0.1	0.21	
	T ₄ CDFs		0.09	0.30	31		-		_	
	1,2,3,7,8+1,2,3,4,8-P ₅ 0	DDF	0.09	0.31	3.2	× 0.03	0.096	× 0.03	0.096	
	2,3,4,7,8-P ₅ CDF		0.07	0.23	2.1	× 0.3	0.63	× 0.3	0.63	
ジ	P₅CDFs		0.07	0.23	37				_	
ベ	1,2,3,4,7,8+1,2,3,4,7,9-	H ₆ CDF	0.09	0.30	4.5	× 0.1	0.45	× 0.1	0.45	
ン	1,2,3,6,7,8-H ₆ CDF		0.09	0.30	3.0		0.30		0.30	
ゾ	1,2,3,7,8,9-H ₆ CDF		0.1	0.3	0.3		0.03		0.03	
フ	2,3,4,6,7,8-H ₆ CDF		0.06	0.21	4.3		0.43		0.43	
	H ₆ CDFs		0.06	0.21	35		_		_	
ン	1,2,3,4,6,7,8-H ₇ CDF		0.07	0.22	17	× 0.01	0.17	× 0.01	0.17	
	1,2,3,4,7,8,9-H ₇ CDF		0.09	0.28	2.6		0.026		0.026	
	H ₇ CDFs		0.07	0.22	32		_		_	
	O ₈ CDF		0.07	0.24	21	× 0.0003	0.0063	× 0.0003	0.0063	
	Total PCDFs		-	-	160		2.3		2.3	
<u> </u>	Total PCDDs+PCDFs		-	-	2100	× 0.0001	5.8	× 0.0001	5.9	
	3,3',4,4'-T ₄ CB	#77	0.09	0.29	100	× 0.0001	0.010	× 0.0001	0.010	
	3,4,4',5-T ₄ CB	#81	0.1	0.3	3.9	× 0.1	0.00117	× 0.1	0.00117	
	3,3',4,4',5-P ₅ CB	#126	0.09	0.31	4.0	× 0.03	0.40	× 0.03	0.40	
_	3,3',4,4',5,5'-H ₆ CB	#169	0.09	0.29	0.36	7. 0.00	0.0108	1	0.0108	
	Non-ortho PCBs	#100	0.07	- 0.22	110	× 0.00003	0.42	× 0.00003	0.42	
0	2',3,4,4',5-P ₅ CB	#123	0.07	0.23	7.4	× 0.00003	0.000222	× 0.00003	0.000222	
l P	2,3',4,4',5-P ₅ CB 2,3,3',4,4'-P ₅ CB	#118	0.09	0.30	430	× 0.00003	0.0129	× 0.00003	0.0129	
	2,3,4,4',5-P ₅ CB	#105 #114	0.06 0.07	0.21 0.25	3.8	× 0.00003	0.0030	× 0.00003	0.0030 0.000114	
	2,3',4,4',5,5'-H ₆ CB	#114	0.07	0.25	3.8 19	× 0.00003	0.000114	× 0.00003	0.000114	
	2,3,3',4,4',5-H ₆ CB	#156	0.09	0.31	40	× 0.00003	0.00037	× 0.00003	0.00037	
8	2,3,3',4,4',5'-H ₆ CB	#156	0.05	0.18	9.9	× 0.00003	0.00120	× 0.00003	0.00120	
	2,3,3',4,4',5,5'-H ₇ CB	#189	0.00	0.20	9.9 N.D.	× 0.00003	0.000297	× 0.00003	0.000297	
	Mono-ortho PCBs	π100	-	-	610		0.018	1	0.000	
	Total Co-PCBs		_	_	710		0.018	+	0.018	
T	tal PCDDs+PCDFs+Co	-PCBs	_	_	2800		6.2	 	6.4	

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-T₄CDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量*1:定量下限未満の実測濃度を0として算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、 表示上の数値を合計しても一致しない場合がある。

表 4-4-2-3 ダイオキシン類調査結果(底質: St. 2)

試料名 St.2				試料媒体		 底質			
		2014年8月6日		試料量(g)			22.9		
$\overline{}$	NAME OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE				₽-V-11 <u>— (8</u> /			生当量	
			検出下限値	空景下阻抗	実測濃度		14 1-	<u> </u>	
				企里 下限他	夫別辰及	WHO-	TEF,2006 *1	WHO-	TEF,2006 *2
		_							
	T	_	pg/g	pg/g	pg/g	pg	−TEQ/g	pį	g-TEQ/g
	1,3,6,8-T₄CDD		0.07	0.25	18		_		_
	1,3,7,9-T ₄ CDD		0.07	0.25	8.9		_		_
	2,3,7,8-T₄CDD		0.07	0.25	(0.17)	×1	0	×1	0.17
	T₄CDDs		0.07	0.25	38		_		_
	1,2,3,7,8-P ₅ CDD		0.1	0.3	0.7	×1	0.7	×1	0.7
	P₅CDDs		0.1	0.3	21		_		_
オ	1,2,3,4,7,8-H ₆ CDD		0.09	0.32	1.4	× 0.1	0.14	× 0.1	0.14
キ	1,2,3,6,7,8-H ₆ CDD		0.07	0.25	2.3		0.23		0.23
シ	1,2,3,7,8,9-H ₆ CDD		0.1	0.3	3.2		0.32		0.32
ン	H ₆ CDDs		0.07	0.25	68		_		_
	1,2,3,4,6,7,8-H ₇ CDD		0.1	0.3	56	× 0.01	0.56	× 0.01	0.56
	H ₇ CDDs		0.1	0.3	180		_		
	O ₈ CDD		0.05	0.18	870	× 0.0003	0.261	× 0.0003	0.261
	Total PCDDs		_	_	1200		2.2		2.4
	1,2,7,8-T₄CDF		0.09	0.29	0.86		_		_
	2,3,7,8-T ₄ CDF		0.09	0.29	1.3	× 0.1	0.13	× 0.1	0.13
	T₄CDFs		0.09	0.29	21				-
	1,2,3,7,8+1,2,3,4,8-P ₅ C	DDF	0.09	0.30	1.8	× 0.03	0.054	× 0.03	0.054
	2,3,4,7,8-P ₅ CDF		0.07	0.23	1.4	× 0.3	0.42	× 0.3	0.42
ジ	P₅CDFs		0.07	0.23	23		_		_
ベ	1,2,3,4,7,8+1,2,3,4,7,9-	H ₆ CDF	0.09	0.29	2.6	× 0.1	0.26	× 0.1	0.26
ン	1,2,3,6,7,8-H ₆ CDF		0.09	0.29	1.8		0.18		0.18
ゾ	1,2,3,7,8,9-H ₆ CDF		0.1	0.3	(0.2)		0		0.02
フ	2,3,4,6,7,8-H ₆ CDF		0.06	0.20	2.6		0.26		0.26
ا ج	H ₆ CDFs		0.06	0.20	21		_		_
レ	1,2,3,4,6,7,8-H ₇ CDF		0.07	0.22	12	× 0.01	0.12	× 0.01	0.12
	1,2,3,4,7,8,9-H ₇ CDF		0.08	0.28	1.4		0.014		0.014
	H ₇ CDFs		0.07	0.22	23		_		_
	O ₈ CDF		0.07	0.24	16	× 0.0003	0.0048	× 0.0003	0.0048
	Total PCDFs		-	_	100		1.4		1.5
	Total PCDDs+PCDFs		-	_	1300		3.7		3.8
	3,3',4,4'-T ₄ CB	#77	0.08	0.28	54	× 0.0001	0.0054	× 0.0001	0.0054
	3,4,4',5-T ₄ CB	#81	0.1	0.3	1.9	× 0.0003	0.00057	× 0.0003	0.00057
	3,3',4,4',5-P ₅ CB	#126	0.09	0.30	2.2	× 0.1	0.22	× 0.1	0.22
	3,3',4,4',5,5'-H ₆ CB	#169	0.09	0.29	0.36	× 0.03	0.0108	× 0.03	0.0108
С	Non-ortho PCBs		_	_	59		0.24	1	0.24
o	2',3,4,4',5-P ₅ CB	#123	0.07	0.23	4.7	× 0.00003	0.000141	× 0.00003	0.000141
	2,3',4,4',5-P ₅ CB	#118	0.09	0.30	260	× 0.00003	0.0078	× 0.00003	0.0078
P	2,3,3',4,4'-P ₅ CB	#105	0.06	0.21	69	× 0.00003	0.00207	× 0.00003	0.00207
	2,3,4,4',5-P ₅ CB	#114	0.07	0.24	3.3	× 0.00003	0.000099	× 0.00003	0.000099
	2,3',4,4',5,5'-H ₆ CB	#167	0.09	0.31	12	× 0.00003	0.00036	× 0.00003	0.00036
	2,3,3',4,4',5-H ₆ CB	#156	0.05	0.17	26	× 0.00003	0.00078	× 0.00003	0.00078
	2,3,3',4,4',5'-H ₆ CB	#157	0.06	0.20	6.9	× 0.00003	0.000207	× 0.00003	0.000207
	2,3,3',4,4',5,5'-H ₇ CB	#189	0.09	0.31	N.D.	× 0.00003	0	× 0.00003	0.00000135
	Mono-ortho PCBs		_	-	380		0.011	<u> </u>	0.011
	Total Co-PCBs		_	_	440		0.25		0.25
То	tal PCDDs+PCDFs+Co	1700		3.9	1	4.1			
			7 2270	エのワの書	性に換算したものであ	이 함투성			

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-T₄CDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量*1:定量下限未満の実測濃度を0として算出する。

^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、 表示上の数値を合計しても一致しない場合がある。

表 4-4-2-4 ダイオキシン類調査結果(底質: St. 3)

試料名 St.3					試料媒体				底質			
採取日 2			2014年8月6	日		試料量(g)		24.7				
\vee									生当量			
			検出下限値	定量下限値		実測濃度		WHO-	TEF,2006 *1		ΓEF,2006 *2	
			pg/g	pg/g		pg/g		pg	g-TEQ/g	pg	-TEQ/g	
	1,3,6,8-T₄CDD	_	0.07	0.23		3.7		, ,	_	10	_	
	1,3,7,9-T₄CDD		0.07	0.23		1.9			_		_	
	2,3,7,8-T₄CDD		0.07	0.23		N.D.		×1	0	× 1	0.035	
	T₄CDDs		0.07	0.23		7.7			_		_	
ダ	1,2,3,7,8-P ₅ CDD		0.09	0.31	(0.21)	×1	0	×1	0.21	
-	P ₅ CDDs		0.09	0.31		4.9			_		_	
オ	1,2,3,4,7,8-H ₆ CDD		0.09	0.29		0.35		× 0.1	0.035	× 0.1	0.035	
+	1,2,3,6,7,8-H ₆ CDD		0.07	0.23		0.47			0.047		0.047	
シ	1,2,3,7,8,9-H ₆ CDD		0.09	0.30		0.88			0.088		0.088	
	H₀CDDs		0.07	0.23		15			—		—	
	1,2,3,4,6,7,8-H ₇ CDD		0.09	0.31		13		× 0.01	0.13	× 0.01	0.13	
	H ₇ CDDs		0.09	0.31	h	41			-		<u> </u>	
	O ₈ CDD		0.05	0.17		200		× 0.0003	0.06	× 0.0003	0.06	
	Total PCDDs		_	_		270			0.36		0.61	
	1,2,7,8-T₄CDF		0.08	0.27	(0.14)		_		_	
	2,3,7,8-T₄CDF		0.08	0.27		0.32		× 0.1	0.032	× 0.1	0.032	
	T₄CDFs		0.08	0.27		4.7			-			
	1,2,3,7,8+1,2,3,4,8-P ₅ C	DF	0.08	0.28		0.42		× 0.03	0.0126	× 0.03	0.0126	
	2,3,4,7,8-P ₅ CDF		0.06	0.21		0.32		× 0.3	0.096	× 0.3	0.096	
ジ	P _s CDFs		0.06	0.21		6.0			-			
ベ	1,2,3,4,7,8+1,2,3,4,7,9-	H ₆ CDF	0.08	0.27		0.56		× 0.1	0.056	× 0.1	0.056	
	1,2,3,6,7,8-H ₆ CDF	Ü	0.08	0.27		0.48			0.048		0.048	
ゾ	1,2,3,7,8,9-H ₆ CDF		0.09	0.31		N.D.			0		0.0045	
	2,3,4,6,7,8-H ₆ CDF		0.06	0.19		0.52			0.052		0.052	
ラ	H _s CDFs		0.06	0.19		4.9			_		_	
	1,2,3,4,6,7,8-H ₇ CDF		0.06	0.20		2.9		× 0.01	0.029	× 0.01	0.029	
	1,2,3,4,7,8,9-H ₇ CDF		0.08	0.26		0.39			0.0039		0.0039	
	H ₇ CDFs		0.06	0.20		5.4			_		_	
	O ₈ CDF		0.07	0.22		4.1		× 0.0003	0.00123	× 0.0003	0.00123	
	Total PCDFs		-	-		25			0.33		0.34	
	Total PCDDs+PCDFs		-	-		290			0.69		0.94	
	3,3',4,4'-T ₄ CB	#77	0.08	0.26		13		× 0.0001	0.0013	× 0.0001	0.0013	
	3,4,4',5-T ₄ CB	#81	0.09	0.30		0.52		× 0.0003	0.000156	× 0.0003	0.000156	
	3,3',4,4',5-P ₅ CB	#126	0.08	0.28		0.65		× 0.1	0.065	× 0.1	0.065	
	3,3',4,4',5,5'-H ₆ CB	#169	0.08	0.27	(0.13)	× 0.03	0	× 0.03	0.0039	
С	Non-ortho PCBs		-	_		14			0.066		0.070	
0	2',3,4,4',5-P ₅ CB	#123	0.06	0.21		1.2		× 0.00003	0.000036	× 0.00003	0.000036	
	2,3',4,4',5-P ₅ CB	#118	0.08	0.28		68		× 0.00003	0.00204	× 0.00003	0.00204	
	2,3,3',4,4'-P ₅ CB	#105	0.06	0.19		19		× 0.00003	0.00057	× 0.00003	0.00057	
	2,3,4,4',5-P ₅ CB	#114	0.07	0.22		0.86		× 0.00003	0.0000258	× 0.00003	0.0000258	
	2,3',4,4',5,5'-H ₆ CB	#167	0.09	0.28		3.7		× 0.00003	0.000111	× 0.00003	0.000111	
s	2,3,3',4,4',5-H ₆ CB	#156	0.05	0.16		7.7		× 0.00003	0.000231	× 0.00003	0.000231	
	2,3,3',4,4',5'-H ₆ CB	#157	0.06	0.18		1.9		× 0.00003	0.000057	× 0.00003	0.000057	
	2,3,3',4,4',5,5'-H ₇ CB	#189	0.09	0.28		1.00		× 0.00003	0.00003	× 0.00003	0.00003	
	Mono-ortho PCBs		-	_		100			0.0031		0.0031	
	Total Co-PCBs		-	-		120			0.070		0.073	
To	tal PCDDs+PCDFs+Co 毒性当量とは毒性等価係		_	-		410			0.76		1.0	

^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-T₄CDDの毒性に換算したものであり、計量対象外である。

^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。

^{4.} 毒性当量*1:定量下限未満の実測濃度を0として算出する。

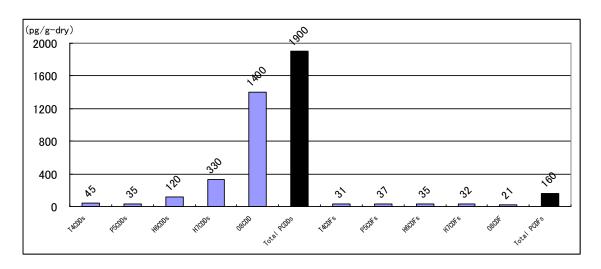
^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。

^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、 表示上の数値を合計しても一致しない場合がある。

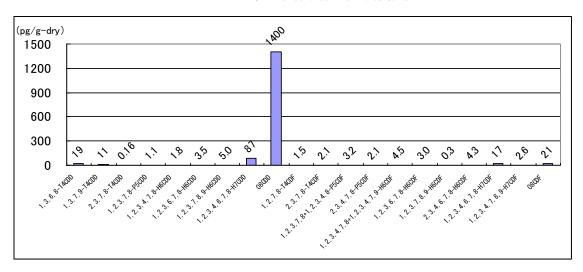
表 4-4-2-5 ダイオキシン類調査結果(底質:St. 4)

試料名		St.4		試料媒体			底質		
採取日	2014	年8月6	日	試料量 (g)		18.8			
					毒		生当量		
		下限値	定量下限値	実測濃度	WHO-	TEF,2006 *1	WHO-	TEF,2006 *2	
	_ p	g/g	pg/g	pg/g	pg	g-TEQ/g	pg	g-TEQ/g	
1,3,6,8-T ₄ CDD	0	.09	0.30	100		_		_	
1,3,7,9-T₄CDD	0	.09	0.30	50		_		_	
2,3,7,8-T ₄ CDD	0	.09	0.30	0.88	×1	0.88	×1	0.88	
T₄CDDs	0	.09	0.30	190		-		_	
ダ 1,2,3,7,8−P₅CDD	(0.1	0.4	4.6	×1	4.6	×1	4.6	
イ P₅CDDs	(0.1	0.4	110				_	
才 1,2,3,4,7,8-H ₆ CDD	(0.1	0.4	6.8	× 0.1	0.68	× 0.1	0.68	
+ 1,2,3,6,7,8−H ₆ CDD	0	.09	0.30	12		1.2		1.2	
シ 1,2,3,7,8,9-H ₆ CDD	(0.1	0.4	12		1.2		1.2	
ン H ₆ CDDs	0	.09	0.30	220				_	
1,2,3,4,6,7,8-H ₇ CDD		0.1	0.4	240	× 0.01	2.4	× 0.01	2.4	
H ₇ CDDs		0.1	0.4	630					
O ₈ CDD	0	.07	0.22	3100	× 0.0003	0.93	× 0.0003	0.93	
Total PCDDs		_		4200		12		12	
1,2,7,8-T₄CDF	(0.1	0.4	4.6		_		_	
2,3,7,8-T ₄ CDF	(0.1	0.4	5.6	× 0.1	0.56	× 0.1	0.56	
T₄CDFs		0.1	0.4	110		_		_	
1,2,3,7,8+1,2,3,4,8-P ₅ CDI	F (0.1	0.4	10	× 0.03	0.30	× 0.03	0.30	
2,3,4,7,8-P ₅ CDF	0	.08	0.28	9.3	× 0.3	2.79	× 0.3	2.79	
ジ P₅CDFs	0	.08	0.28	160		_		_	
べ 1,2,3,4,7,8+1,2,3,4,7,9-H ₆	CDF	0.1	0.4	15	× 0.1	1.5	× 0.1	1.5	
ン 1,2,3,6,7,8-H ₆ CDF	(0.1	0.4	13		1.3		1.3	
ゾ 1,2,3,7,8,9−H ₆ CDF	(0.1	0.4	1.3		0.13		0.13	
フ 2,3,4,6,7,8-H ₆ CDF	0	.07	0.24	19		1.9		1.9	
ラ H ₆ CDFs	0	.07	0.24	140		_		_	
ン 1,2,3,4,6,7,8-H ₇ CDF	0	.08	0.27	79	× 0.01	0.79	× 0.01	0.79	
1,2,3,4,7,8,9-H ₇ CDF	(0.1	0.3	8.8		0.088		0.088	
H ₇ CDFs	0	.08	0.27	140		_		_	
O ₈ CDF	0	.09	0.29	86	× 0.0003	0.0258	× 0.0003	0.0258	
Total PCDFs		_	_	640		9.4		9.4	
Total PCDDs+PCDFs		-	-	4900		21		21	
7		0.1	0.3	290	× 0.0001	0.029	× 0.0001	0.029	
		0.1	0.4	7.1	× 0.0003	0.00213	× 0.0003	0.00213	
		0.1	0.4	13	× 0.1	1.3	× 0.1	1.3	
_ <u> </u>	169 (0.1	0.3	2.5	× 0.03	0.075	× 0.03	0.075	
C Non-ortho PCBs		-	-	310	V 0 00000	1.4	× 0.00000	1.4	
		.08	0.27	21	× 0.00003	0.00063	× 0.00003	0.00063	
'		0.1	0.4	1700	× 0.00003	0.051	× 0.00003 × 0.00003	0.051	
		80.0	0.25	550	× 0.00003 × 0.00003	0.0165		0.0165	
		0.09	0.29	17	× 0.00003	0.00051	× 0.00003 × 0.00003	0.00051	
		0.1	0.4	80	× 0.00003	0.00240	× 0.00003	0.00240	
		0.06	0.21	180	× 0.00003	0.0054	× 0.00003	0.0054	
		0.07	0.24	42	× 0.00003	0.00126	× 0.00003	0.00126	
	189 (0.1	0.4	N.D.	^ 0.00003	0	^ U.UUUU3	0.0000015	
Mono-ortho PCBs		_	-	2500		0.078		0.078	
Total Co-PCBs		-	_	2900		1.5		1.5	
Total PCDDs+PCDFs+Co-F		-		7700 性に換管したものでを		23		23	

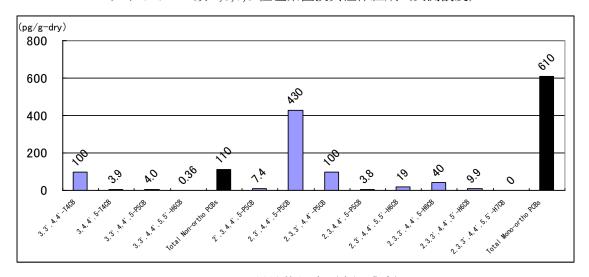
^{1.} 毒性当量とは毒性等価係数を用いて、2,3,7,8-T₄CDDの毒性に換算したものであり、計量対象外である。


^{2.} 実測濃度の項において、検出下限以上定量下限未満の濃度は括弧付きの数字で記載する。

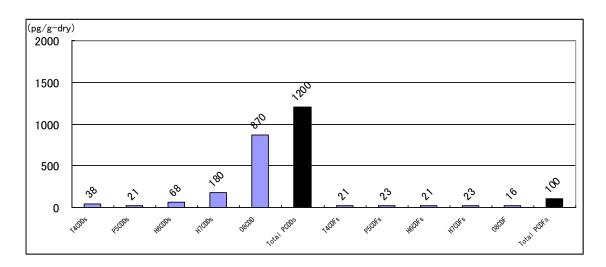
^{3.} 実測濃度の項において、検出下限未満のものは"N.D."と記載する。


^{4.} 毒性当量*1:定量下限未満の実測濃度を0として算出する。

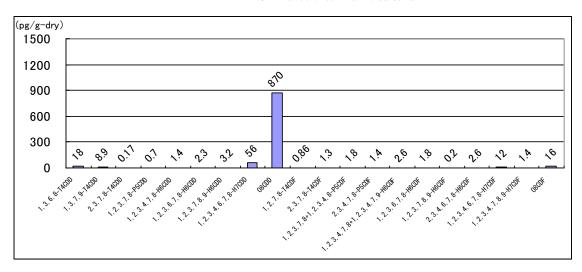
^{*2:}検出下限未満の数値は検出下限値の1/2の値を用いて算出する。


^{5.} 表示は原則として2桁とするが、合計の算出には丸めを行っていない数値を用いているため、 表示上の数値を合計しても一致しない場合がある。

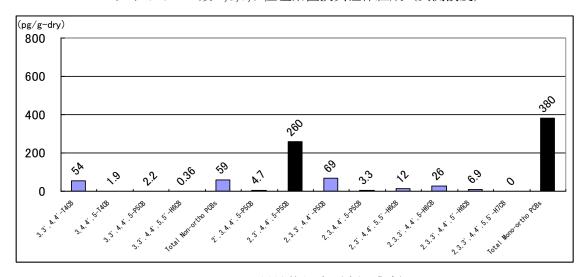
ダイオキシン類同族体組成 (実測濃度)



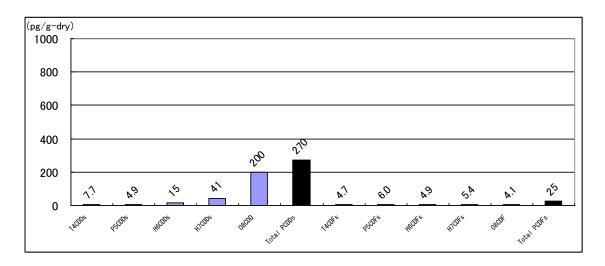
ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)



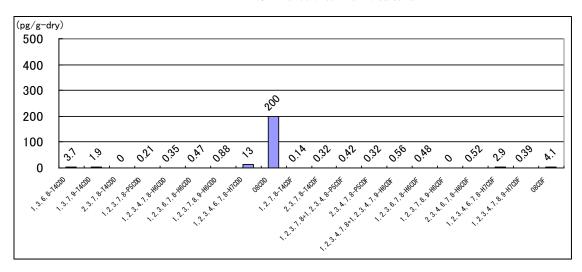
Co-PCBs 異性体組成 (実測濃度)


図 4-4-2-1 同族体および異性体の組成(底質: St. 1)

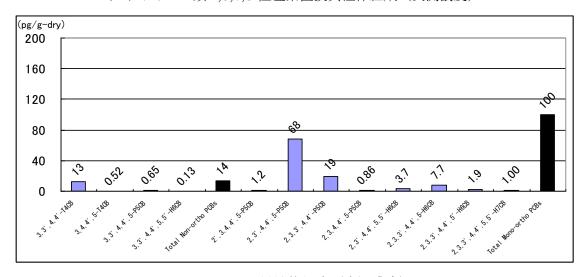
ダイオキシン類同族体組成 (実測濃度)



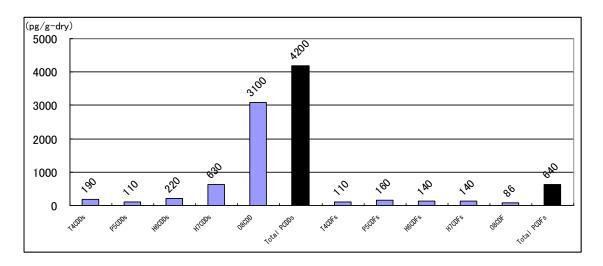
ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)



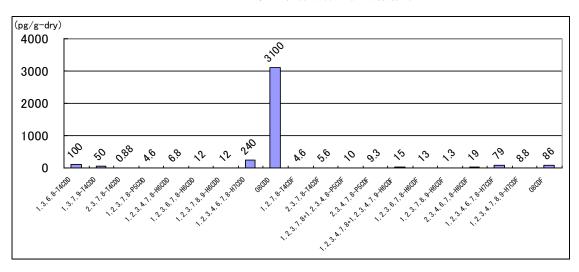
Co-PCBs 異性体組成 (実測濃度)


図 4-4-2-2 同族体および異性体の組成(底質: St. 2)

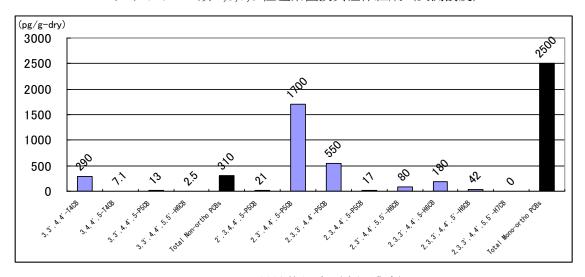
ダイオキシン類同族体組成 (実測濃度)



ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)



Co-PCBs 異性体組成 (実測濃度)


図4-4-2-3 同族体および異性体の組成(底質:St.3)

ダイオキシン類同族体組成 (実測濃度)

ダイオキシン類 2,3,7,8-位塩素置換異性体組成 (実測濃度)

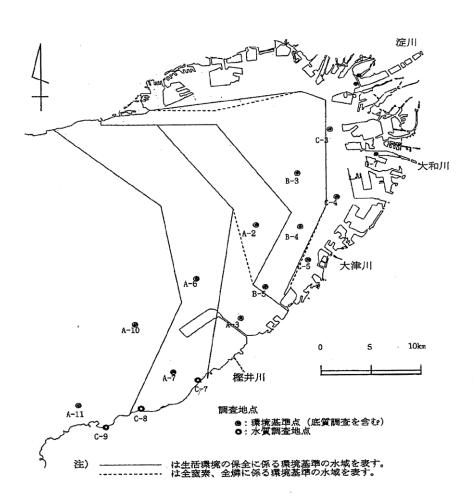

Co-PCBs 異性体組成 (実測濃度)

図 4-4-2-4 同族体および異性体の組成(底質: St. 4)

参考資料 平成25年度ダイオキシン類常時監視結果

調査地点	水質調査結果 (pg-TEQ/L)	底質調査結果 (pg-TEQ/g)				
C-3	0.047	18				
B-4	0.037	6. 2				
A-3	0.031	12				
A-7	0.022	9.6				
A-11	0.022	1.0				
平均値	0.032	9. 4				

備考:大阪府ホームページ内の「大阪府ダイオキシン類常時監視結果」より抜粋。

調査地点図